Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Allergen-encoding bone marrow transfer inactivates allergic T cell responses, alleviating airway inflammation
Jane AL-Kouba, … , Philip M. Hansbro, Raymond J. Steptoe
Jane AL-Kouba, … , Philip M. Hansbro, Raymond J. Steptoe
Published June 2, 2017
Citation Information: JCI Insight. 2017;2(11):e85742. https://doi.org/10.1172/jci.insight.85742.
View: Text | PDF
Research Article Immunology Stem cells

Allergen-encoding bone marrow transfer inactivates allergic T cell responses, alleviating airway inflammation

  • Text
  • PDF
Abstract

Memory Th2 cell responses underlie the development and perpetuation of allergic diseases. Because these states result from immune dysregulation, established Th2 cell responses represent a significant challenge for conventional immunotherapies. New approaches that overcome the detrimental effects of immune dysregulation are required. We tested whether memory Th2 cell responses were silenced using a therapeutic approach where allergen expression in DCs is transferred to sensitized recipients using BM cells as a vector for therapeutic gene transfer. Development of allergen-specific Th2 responses and allergen-induced airway inflammation was blocked by expression of allergen in DCs. Adoptive transfer studies showed that Th2 responses were inactivated by a combination of deletion and induction of T cell unresponsiveness. Transfer of BM encoding allergen expression targeted to DCs terminated, in an allergen-specific manner, Th2 responses in sensitized recipients. Importantly, when preexisting airway inflammation was present, there was effective silencing of Th2 cell responses, airway inflammation was alleviated, and airway hyperreactivity was reversed. The effectiveness of DC-targeted allergen expression to terminate established Th2 responses in sensitized animals indicates that exploiting cell-intrinsic T cell tolerance pathways could lead to development of highly effective immunotherapies.

Authors

Jane AL-Kouba, Andrew N. Wilkinson, Malcolm R. Starkey, Rajeev Rudraraju, Rhiannon B. Werder, Xiao Liu, Soi-Cheng Law, Jay C. Horvat, Jeremy F. Brooks, Geoffrey R. Hill, Janet M. Davies, Simon Phipps, Philip M. Hansbro, Raymond J. Steptoe

×

Usage data is cumulative from July 2021 through July 2022.

Usage JCI PMC
Text version 1,727 111
PDF 109 23
Figure 212 6
Supplemental data 14 2
Citation downloads 50 0
Totals 2,112 142
Total Views 2,254

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts