Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
TFAP2A orchestrates gene regulatory networks and tubular architecture in kidney outer medullary collecting ducts
Janna Leiz, … , Christian Hinze, Kai M. Schmidt-Ott
Janna Leiz, … , Christian Hinze, Kai M. Schmidt-Ott
Published August 28, 2025
Citation Information: JCI Insight. 2025;10(19):e192361. https://doi.org/10.1172/jci.insight.192361.
View: Text | PDF
Research Article Cell biology Nephrology

TFAP2A orchestrates gene regulatory networks and tubular architecture in kidney outer medullary collecting ducts

  • Text
  • PDF
Abstract

Mutations in the transcription factor TFAP2A are linked to congenital anomalies of the kidney and urinary tract in humans. While Tfap2a knockout (KO) in mouse collecting ducts leads to tubular epithelial abnormalities, its precise molecular functions in kidney tubules remain unclear. To investigate Tfap2a-dependent gene regulatory networks in the mouse kidney collecting ducts, we employed conditional KO (Hoxb7-Cre; Tfap2afl/fl) models combined with transcriptomics. Histomorphological and physiological assessments of Tfap2a-KO mice revealed progressive postnatal dilation of the outer medullary collecting ducts. Integrating bulk and single-nucleus RNA sequencing with in silico motif mapping in ATAC-seq datasets demonstrated that Tfap2a is highly expressed and active in normal collecting duct principal cells. Comparative transcriptomics between 3-month-old Tfap2a-KO and control mice identified dysregulated genes associated with cell adhesion and WNT signaling, including Alcam and Wnt9b. These changes were confirmed by in situ hybridization. Our findings reveal that Tfap2a regulates medullary collecting duct diameter by orchestrating a transcriptional network involving Wnt9b and Alcam, providing insights into its role in kidney structural integrity.

Authors

Janna Leiz, Karen I. López-Cayuqueo, Shuang Cao, Louisa M.S. Gerhardt, Christian Hinze, Kai M. Schmidt-Ott

×

Figure 6

Transcriptomic changes and enriched biological processes in Tfap2a-deficient OMCD cells revealed by snRNA-seq.

Options: View larger image (or click on image) Download as PowerPoint
Transcriptomic changes and enriched biological processes in Tfap2a-defic...
(A) Differentially expressed genes in outer medullary collecting duct (OMCD) cells. P < 0.05 by Wilcoxon’s rank sum test. (B) Highly enriched biological processes identified for 241 genes downregulated in Tfap2a-deficient OMCD cells. Colors represent the q value for the depicted process; dot size the number of putative target genes associated with the process. The gene ratio (x axis) represents the number of putative target genes divided by the total number of genes associated with the respective pathway.

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts