Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
MUC1-C dependence in treatment-resistant prostate cancer uncovers a target for antibody-drug conjugate therapy
Keisuke Shigeta, Tatsuaki Daimon, Hiroshi Hongo, Sheng-Yu Ku, Hiroki Ozawa, Naoki Haratake, Atsushi Fushimi, Ayako Nakashoji, Atrayee Bhattacharya, Shinkichi Takamori, Michihisa Kono, Masahiro Rokugo, Yuto Baba, Takeo Kosaka, Mototsugu Oya, Justine Jacobi, Mark D. Long, Himisha Beltran, Donald Kufe
Keisuke Shigeta, Tatsuaki Daimon, Hiroshi Hongo, Sheng-Yu Ku, Hiroki Ozawa, Naoki Haratake, Atsushi Fushimi, Ayako Nakashoji, Atrayee Bhattacharya, Shinkichi Takamori, Michihisa Kono, Masahiro Rokugo, Yuto Baba, Takeo Kosaka, Mototsugu Oya, Justine Jacobi, Mark D. Long, Himisha Beltran, Donald Kufe
View: Text | PDF
Research Article Oncology Therapeutics

MUC1-C dependence in treatment-resistant prostate cancer uncovers a target for antibody-drug conjugate therapy

  • Text
  • PDF
Abstract

Androgen receptor–positive prostate cancer (PC), castration-resistant prostate cancer (CRPC), and neuroendocrine prostate cancer (NEPC) invariably become resistant to treatment with targeted and cytotoxic agents. Multiple pathways have been identified as being responsible for these pleiotropic mechanisms of resistance. The mucin 1 (MUC1) gene is aberrantly expressed in CRPC/NEPC in association with poor clinical outcomes; however, it is not known if the oncogenic MUC1-C/M1C protein drives treatment resistance. We demonstrated that MUC1-C is necessary for resistance of (i) PC cells to enzalutamide (ENZ) and (ii) CRPC and NEPC cells to docetaxel (DTX). Our results showed that MUC1-C–mediated resistance is conferred by upregulation of aerobic glycolysis and suppression of reactive oxygen species necessary for self-renewal. Dependence of these resistant phenotypes on MUC1-C for the cancer stem cell (CSC) state identified a potential target for treatment. In this regard, we further demonstrated that targeting MUC1-C with an M1C antibody-drug conjugate (ADC) is highly effective in suppressing (i) self-renewal of drug-resistant CRPC/NEPC CSCs and (ii) growth of treatment-emergent NEPC tumor xenografts derived from drug-resistant cells and a patient with refractory disease. These findings uncovered a common MUC1-C–dependent pathway in treatment-resistant CRPC/NEPC progression and identified MUC1-C as a target for their therapy with an M1C ADC.

Authors

Keisuke Shigeta, Tatsuaki Daimon, Hiroshi Hongo, Sheng-Yu Ku, Hiroki Ozawa, Naoki Haratake, Atsushi Fushimi, Ayako Nakashoji, Atrayee Bhattacharya, Shinkichi Takamori, Michihisa Kono, Masahiro Rokugo, Yuto Baba, Takeo Kosaka, Mototsugu Oya, Justine Jacobi, Mark D. Long, Himisha Beltran, Donald Kufe

×

Figure 2

MUC1-C/MYC pathway regulates aerobic glycolysis, ENZ resistance, and the CSC state in LNCaP-ER cells.

Options: View larger image (or click on image) Download as PowerPoint
MUC1-C/MYC pathway regulates aerobic glycolysis, ENZ resistance, and the...
(A and B) Immunoblot analysis of chromatin from LNCaP and LNCaP-ER cells (A) and LNCaP-ER/tet-MUC1shRNA (B) cells treated with DOX for 7 days each run contemporaneously in parallel. (C) Immunoblot analysis of lysates from LNCaP-ER cells expressing the indicated vectors treated with DOX for 7 days run contemporaneously in parallel. (D) GSEA of RNA-Seq data from LNCaP-ER cells with MUC1-C silencing and LNCaP/MUC1-C OE cells using the HALLMARK MYC TARGETS V1 signature. NES, normalized enrichment score. (E) Heatmap of glycolysis gene expression in LNCaP and LNCaP-ER cells. (F) Immunoblot analysis of lysates from LNCaP and LNCaP-ER cells run contemporaneously in parallel. (G) Heatmap of glycolysis gene expression of LNCaP-ER/tet-MUC1shRNA cells treated with DOX for 7 days. (H) Immunoblot analysis of lysates from LNCaP-ER/tet-MUC1shRNA cells treated with DOX for 7 days run contemporaneously in parallel. (I) LNCaP-ER cells treated with 3 μM GO-203 (upper) and LNCaP-ER/tet-MUC1shRNA cells treated with DOX for 7 days (lower) were assayed for OCR and ECAR. The OCR/ECAR results (mean ± SD of 4 determinations) are expressed as the relative ratio compared with untreated cells (t test; n = 3). (J) LNCaP-ER/tet-MYCshRNA cells treated with DOX for 7 days were analyzed for the indicated transcripts by qRT-PCR. The results (mean ± SD of 4 determinations) are expressed as relative levels compared with untreated cells (assigned a value of 1) (t test; n = 3). (K) Immunoblot analysis of lysates from LNCaP-ER/tet-MYCshRNA cells treated with DOX for 7 days run contemporaneously in parallel. (L) LNCaP-ER/tet-MYCshRNA cells treated with vehicle or DOX for 7 days were analyzed for tumorsphere formation. Representative photomicrographs of tumorspheres (left). Results (mean ± SD of 3 determinations) expressed as tumorsphere number (t test; n = 3). (M) LNCaP-ER/tet-MYCshRNA cells treated with DOX for 7 days and then ENZ for 3 days were analyzed for cell viability. **P < 0.01, and ***P < 0.001.

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts