ADAR1 edits double-stranded RNAs (dsRNAs) by deaminating adenosines into inosines, preventing aberrant activation of innate immunity by endogenous dsRNAs, which may resemble viral structures. Several tumors exploit ADAR1 to evade immune surveillance; indeed, its deletion reduces tumor viability and reshapes infiltrating leukocytes. Here we investigated the role of ADAR1 in immune evasion mechanisms during cervical cancer (CC) progression. Patients’ biopsy samples showed higher ADAR1 expression already in premalignant lesions (squamous intraepithelial lesions [SIL]) and a substantially reduced percentage of infiltrating CD7+ innate cells in in situ and invasive carcinomas compared with normal mucosa, with CD56+ NK cells showing phenotypic alterations that may have affected their functional responses. In CC-derived cell lines (SiHa, CaSki), ADAR1 silencing reduced cell proliferation, an effect further enhanced by exogenous IFN-β administration. It also induced proinflammatory gene expression, as demonstrated by RNA-Seq analysis, and conditioned supernatants collected from these cells activated several NK cell effector functions. NK cell infiltration and activation were also confirmed in organotypic 3D tissue models of SiHa cells knocked out for ADAR1. In conclusion, ADAR1 expression increased with CC progression and was accompanied by alterations in tumor-infiltrating NK cells, but its silencing in CC-derived cell lines potentiated antitumor NK cell activities. Thus, ADAR1 inhibition may represent a therapeutic perspective for CC and possibly other malignancies.
Valentina Tassinari, Marta Kaciulis, Stefano Petrai, Helena Stabile, Angelina Pernazza, Martina Leopizzi, Valeria Di Maio, Francesca Belleudi, Danilo Ranieri, Vanessa Mancini, Innocenza Palaia, Federica Tanzi, Ludovica Lospinoso Severini, Silvia Ruggeri, Maria Emanuela Greco, Giovanni Bernardini, Alessandra Zingoni, Marco Cippitelli, Cristina Cerboni, Alessandra Soriani
Usage data is cumulative from July 2025 through December 2025.
| Usage | JCI | PMC |
|---|---|---|
| Text version | 1,041 | 184 |
| 297 | 52 | |
| Figure | 395 | 7 |
| Supplemental data | 121 | 5 |
| Citation downloads | 87 | 0 |
| Totals | 1,941 | 248 |
| Total Views | 2,189 | |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.