Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
CDK2 inhibition produces a persistent population of polyploid cancer cells
Liliya Tyutyunyk-Massey, Zibo Chen, Xiuxia Liu, Masanori Kawakami, Adam Harned, Yeap Ng, Brian Luke, Samuel C. Okpechi, Blessing Ogunlade, Yair Alfaro, Roberto Weigert, Kedar Narayan, Xi Liu, Ethan Dmitrovsky
Liliya Tyutyunyk-Massey, Zibo Chen, Xiuxia Liu, Masanori Kawakami, Adam Harned, Yeap Ng, Brian Luke, Samuel C. Okpechi, Blessing Ogunlade, Yair Alfaro, Roberto Weigert, Kedar Narayan, Xi Liu, Ethan Dmitrovsky
View: Text | PDF
Research Article Oncology Therapeutics

CDK2 inhibition produces a persistent population of polyploid cancer cells

  • Text
  • PDF
Abstract

Aneuploidy, a cancer hallmark, drives chromosomal instability, drug resistance, and clinically aggressive tumors. Cyclin-dependent kinase 2 (CDK2) antagonism with independent inhibitors or CDK2 knockdown triggered anaphase catastrophe. This disrupts supernumerary centrosome clustering, causing multipolar division and apoptosis. Time-lapse fluorescence microscopy of fluorescent ubiquitination-based cell cycle indicator (FUCCI) cell cycle probes transduced into aneuploid lung cancer cells revealed distinct fates of bipolar and polyploid cells after CDK2 inhibition. Apoptosis occurred in multipolar progeny but was repressed in persistent polyploid cancer cells. RNA-Seq analyses after CDK2 inhibition of 4N versus 2N lung cancer cells were enriched for CDK1 pathway and KIF family members. The Cancer Genome Atlas (TCGA) analysis of lung cancers indicated that CDK1 and KIF family member overexpression was associated with an unfavorable survival. Intravital microscopy of transplanted lung cancer cells in mice extended findings from the in vitro to in vivo settings. CDK2 inhibition of tumor-bearing mice produced polyploid cancer cells in vivo. These cancer cells were resistant to apoptosis and proliferated despite CDK2 inhibition. In contrast, polyploid populations were rarely detected in CDK2-inhibited human alveolar epithelial cells. These findings are translationally relevant. Combined targeting of CDK2 with CDK1 or kinesin family member antagonists should eliminate polyploid cancer cells, promote apoptosis, and augment antineoplastic effects.

Authors

Liliya Tyutyunyk-Massey, Zibo Chen, Xiuxia Liu, Masanori Kawakami, Adam Harned, Yeap Ng, Brian Luke, Samuel C. Okpechi, Blessing Ogunlade, Yair Alfaro, Roberto Weigert, Kedar Narayan, Xi Liu, Ethan Dmitrovsky

×

Figure 8

Intravital 2-photon microscopy of in vivo human H1299 lung cancers.

Options: View larger image (or click on image) Download as PowerPoint
Intravital 2-photon microscopy of in vivo human H1299 lung cancers.
(A) ...
(A) H1299 cells were transplanted into the tongues of individual NCG mice. Intravital microscopic images were acquired after individual CDK2 inhibitor-treatment versus controls for the indicated lengths of time. (B) Nuclear volumes were measured by segmentation of FUCCI mKO2 fluorescence signals. (C–E) Representative fluorescence images and 3D models of bipolar mitotic, multipolar mitotic, mononucleated, and multinucleated cellular events from each of the vehicle (C), CYC065 (D), and PF07104091 (E) treatment arms are shown. The Fisher’s exact test was used to compare nuclear volume distributions in intravital microscopy where a P value below 0.05 was deemed statistically significant. The symbols indicate *P < 0.05, **P < 0.01, and ***P < 0.001. Scale bars: 5 μm.

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts