Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Physiologic relevance of the transpulmonary metabolome in connective tissue disease–associated pulmonary vascular disease
Michael H. Lee, Thaís C. F. Menezes, Julie A. Reisz, Francesca I. Cendali, Eloara V. M. Ferreira, Jaquelina S. Ota-Arakaki, Priscila A. Sperandio, Rahul Kumar, Claudia Mickael, Martin M. Ieong, Juliana Lucena Santos, Ana Carolina B. Duarte, Dara C. Fonseca Balladares, Kevin Nolan, Rubin M. Tuder, Paul M. Hassoun, Angelo D’Alessandro, Rudolf K. F. Oliveira, Brian B. Graham
Michael H. Lee, Thaís C. F. Menezes, Julie A. Reisz, Francesca I. Cendali, Eloara V. M. Ferreira, Jaquelina S. Ota-Arakaki, Priscila A. Sperandio, Rahul Kumar, Claudia Mickael, Martin M. Ieong, Juliana Lucena Santos, Ana Carolina B. Duarte, Dara C. Fonseca Balladares, Kevin Nolan, Rubin M. Tuder, Paul M. Hassoun, Angelo D’Alessandro, Rudolf K. F. Oliveira, Brian B. Graham
View: Text | PDF
Research Article Metabolism Pulmonology Vascular biology

Physiologic relevance of the transpulmonary metabolome in connective tissue disease–associated pulmonary vascular disease

  • Text
  • PDF
Abstract

Pathologic implications of dysregulated pulmonary vascular metabolism to pulmonary arterial hypertension (PAH) are increasingly recognized, but their clinical applications have been limited. We hypothesized that metabolite quantification across the pulmonary vascular bed in connective tissue disease–associated (CTD-associated) PAH would identify transpulmonary gradients of pathobiologically relevant metabolites, in an exercise stage–specific manner. Sixty-three CTD patients with established or suspected PAH underwent exercise right heart catheterization. Using mass spectrometry–based metabolomics, metabolites were quantified in plasma samples simultaneously collected from the pulmonary and radial arteries at baseline and during resistance-free wheeling, peak exercise, and recovery. We identified uptake and excretion of metabolites across the pulmonary vascular bed, unique and distinct from single vascular site analysis. We demonstrated the physiological relevance of metabolites previously shown to promote disease in animal models and end-stage human lung tissues, including acylcarnitines, glycolytic intermediates, and tryptophan catabolites. Notably, pulmonary vascular metabolite handling was exercise stage specific. Transpulmonary metabolite gradients correlated with hemodynamic endpoints largely during free-wheeling. Glycolytic intermediates demonstrated physiologic significance at peak exercise, including net uptake of lactate in those with more advanced disease. Contribution of pulmonary vascular metabolism to CTD-PAH pathogenesis and therapeutic candidacy of metabolism modulation must be considered in the context of physiologic stress.

Authors

Michael H. Lee, Thaís C. F. Menezes, Julie A. Reisz, Francesca I. Cendali, Eloara V. M. Ferreira, Jaquelina S. Ota-Arakaki, Priscila A. Sperandio, Rahul Kumar, Claudia Mickael, Martin M. Ieong, Juliana Lucena Santos, Ana Carolina B. Duarte, Dara C. Fonseca Balladares, Kevin Nolan, Rubin M. Tuder, Paul M. Hassoun, Angelo D’Alessandro, Rudolf K. F. Oliveira, Brian B. Graham

×

Figure 5

Transpulmonary lactate handling by disease severity during peak exercise.

Options: View larger image (or click on image) Download as PowerPoint
Transpulmonary lactate handling by disease severity during peak exercise...
Disease severity was defined and the participants were grouped according to functional class (A), baseline PVR (B), or ΔmPAP/CO (C). ****P < 0.0001; *P < 0.05. Statistical analyses were performed using ordinary 2-way ANOVA with multiple comparisons corrected with the Tukey method (detailed in Supplemental Tables 3–5). In all 3 panels, a single value (6.55 × 10–7) significantly larger than the rest was omitted from the FC1, the low PVR, and the low mPAP/CO subgroups to aid visualization. AU, arbitrary unit; CO, cardiac output; FC, functional class; mPAP, mean pulmonary artery pressure; PVR, pulmonary vascular resistance.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts