Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Device-free isolation of photoreceptor cells from patient iPSC-derived retinal organoids
Nicholas E. Stone, Laura R. Bohrer, Nathaniel K. Mullin, Alexander Berthold, Allison T. Wright, Ian C. Han, Edwin M. Stone, Robert F. Mullins, Budd A. Tucker
Nicholas E. Stone, Laura R. Bohrer, Nathaniel K. Mullin, Alexander Berthold, Allison T. Wright, Ian C. Han, Edwin M. Stone, Robert F. Mullins, Budd A. Tucker
View: Text | PDF
Research Article Ophthalmology Stem cells

Device-free isolation of photoreceptor cells from patient iPSC-derived retinal organoids

  • Text
  • PDF
Abstract

Autologous photoreceptor cell replacement is one of the most promising strategies currently being developed for the treatment of patients with inherited retinal degenerative blindness. Induced pluripotent stem cell–derived (iPSC-derived) retinal organoids, which faithfully recapitulate the structure of the neural retina, are an ideal source of transplantable photoreceptors required for these therapies. However, retinal organoids contain other retinal cell types, including bipolar, horizontal, and amacrine cells, which are unneeded and may reduce the potency of the final therapeutic product. Therefore, approaches for isolating fate-committed photoreceptor cells from dissociated retinal organoids are desirable. In this work, we present partial dissociation, a technique that leverages the high level of organization found in retinal organoids to enable selective enrichment of photoreceptor cells without the use of specialized equipment or reagents such as antibody labels. We demonstrate up to 90% photoreceptor cell purity by simply selecting cell fractions liberated from retinal organoids during enzymatic digestion in the absence of mechanical dissociation. Since the presented approach relies on the use of standard plasticware and commercially available current good manufacturing practice–compliant reagents, we believe that it is ideal for use in the preparation of clinical photoreceptor cell replacement therapies.

Authors

Nicholas E. Stone, Laura R. Bohrer, Nathaniel K. Mullin, Alexander Berthold, Allison T. Wright, Ian C. Han, Edwin M. Stone, Robert F. Mullins, Budd A. Tucker

×

Figure 3

RNA and protein analysis of cells liberated during partial dissociation.

Options: View larger image (or click on image) Download as PowerPoint
RNA and protein analysis of cells liberated during partial dissociation....
(A–C) Expression of photoreceptor precursor (A), photoreceptor (B), and RPE markers (C) as assessed via qPCR in cell fractions obtained after 20, 40, 60, and 80 minutes of partial dissociation of line 2 organoids, as well as in the fully dissociated remaining tissue. (D–F) Relative abundance of CD133+ photoreceptors was also assessed via flow cytometry after partial dissociation of line 3 organoids for 30 minutes (D) and 60 minutes (E) as well as in fully dissociated remaining tissue (F). Raw CT and calculated relative expression values are provided in Supplemental Table 4.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts