Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Device-free isolation of photoreceptor cells from patient iPSC-derived retinal organoids
Nicholas E. Stone, … , Robert F. Mullins, Budd A. Tucker
Nicholas E. Stone, … , Robert F. Mullins, Budd A. Tucker
Published June 12, 2025
Citation Information: JCI Insight. 2025;10(14):e186338. https://doi.org/10.1172/jci.insight.186338.
View: Text | PDF
Research Article Ophthalmology Stem cells

Device-free isolation of photoreceptor cells from patient iPSC-derived retinal organoids

  • Text
  • PDF
Abstract

Autologous photoreceptor cell replacement is one of the most promising strategies currently being developed for the treatment of patients with inherited retinal degenerative blindness. Induced pluripotent stem cell–derived (iPSC-derived) retinal organoids, which faithfully recapitulate the structure of the neural retina, are an ideal source of transplantable photoreceptors required for these therapies. However, retinal organoids contain other retinal cell types, including bipolar, horizontal, and amacrine cells, which are unneeded and may reduce the potency of the final therapeutic product. Therefore, approaches for isolating fate-committed photoreceptor cells from dissociated retinal organoids are desirable. In this work, we present partial dissociation, a technique that leverages the high level of organization found in retinal organoids to enable selective enrichment of photoreceptor cells without the use of specialized equipment or reagents such as antibody labels. We demonstrate up to 90% photoreceptor cell purity by simply selecting cell fractions liberated from retinal organoids during enzymatic digestion in the absence of mechanical dissociation. Since the presented approach relies on the use of standard plasticware and commercially available current good manufacturing practice–compliant reagents, we believe that it is ideal for use in the preparation of clinical photoreceptor cell replacement therapies.

Authors

Nicholas E. Stone, Laura R. Bohrer, Nathaniel K. Mullin, Alexander Berthold, Allison T. Wright, Ian C. Han, Edwin M. Stone, Robert F. Mullins, Budd A. Tucker

×

Figure 1

Overview.

Options: View larger image (or click on image) Download as PowerPoint
Overview.
(A) Patient iPSC-derived retinal organoids (day 160) showing c...
(A) Patient iPSC-derived retinal organoids (day 160) showing characteristic laminar structure with photoreceptors expressing NRL and ARR3 present on their outer layer. (B) Partial dissociations were performed by placing organoids in papain on a rotating rack at 37°C and periodically collecting liberated cells. For the scRNA-Seq experiments shown in Figures 4 and 5, fractions were collected every 20 minutes. Between each stage of dissociation, the supernatant containing liberated cells was removed, after which the organoids were rinsed and placed in fresh papain. After collecting the final partially dissociated cell fraction, remaining aggregates were fully dissociated via trituration. (C) After performing 40 minutes of dissociation, the outer layer of photoreceptors is selectively removed. Scale bars: 100 μm.

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts