Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Leveraging complementary multi-omics data integration methods for mechanistic insights in kidney diseases
Fadhl Alakwaa, … , Anil Karihaloo, Sean Eddy
Fadhl Alakwaa, … , Anil Karihaloo, Sean Eddy
Published March 10, 2025
Citation Information: JCI Insight. 2025;10(5):e186070. https://doi.org/10.1172/jci.insight.186070.
View: Text | PDF
Research Article Nephrology

Leveraging complementary multi-omics data integration methods for mechanistic insights in kidney diseases

  • Text
  • PDF
Abstract

Chronic kidney diseases (CKDs) are a global health concern, necessitating a comprehensive understanding of their complex pathophysiology. This study explores the use of 2 complementary multidimensional -omics data integration methods to elucidate mechanisms of CKD progression as a proof of concept. Baseline biosamples from 37 participants with CKD in the Clinical Phenotyping and Resource Biobank Core (C-PROBE) cohort with prospective longitudinal outcome data ascertained over 5 years were used to generate molecular profiles. Tissue transcriptomic, urine and plasma proteomic, and targeted urine metabolomic profiling were integrated using 2 orthogonal multi-omics data integration approaches, one unsupervised and the other supervised. Both integration methods identified 8 urinary proteins significantly associated with long-term outcomes, which were replicated in an adjusted survival model using 94 samples from an independent validation group in the same cohort. The 2 methods also identified 3 shared enriched pathways: the complement and coagulation cascades, cytokine–cytokine receptor interaction pathway, and the JAK/STAT signaling pathway. Use of different multiscalar data integration strategies on the same data enabled identification and prioritization of disease mechanisms associated with CKD progression. Approaches like this will be invaluable with the expansion of high-dimension data in kidney diseases.

Authors

Fadhl Alakwaa, Vivek Das, Arindam Majumdar, Viji Nair, Damian Fermin, Asim B. Dey, Timothy Slidel, Dermot F. Reilly, Eugene Myshkin, Kevin L. Duffin, Yu Chen, Markus Bitzer, Subramaniam Pennathur, Frank C. Brosius, Matthias Kretzler, Wenjun Ju, Anil Karihaloo, Sean Eddy

×

Usage data is cumulative from March 2025 through December 2025.

Usage JCI PMC
Text version 4,211 1,662
PDF 672 201
Figure 1,136 0
Table 175 0
Supplemental data 1,213 79
Citation downloads 128 0
Totals 7,535 1,942
Total Views 9,477

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts