Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Mitochondrial defects and metabolic vulnerabilities in Lynch syndrome–associated MSH2-deficient endometrial cancer
Mikayla Borthwick Bowen, Brenda Melendez, Qian Zhang, Diana Moreno, Leah Peralta, Wai Kin Chan, Collene Jeter, Lin Tan, M. Anna Zal, Philip L. Lorenzi, Kenneth Dunner Jr., Richard K. Yang, Russell R. Broaddus, Joseph Celestino, Nisha Gokul, Elizabeth Whitley, Deena M. Scoville, Tae Hoon Kim, Jae-Wook Jeong, Rosemarie Schmandt, Karen Lu, Hyun-Eui Kim, Melinda S. Yates
Mikayla Borthwick Bowen, Brenda Melendez, Qian Zhang, Diana Moreno, Leah Peralta, Wai Kin Chan, Collene Jeter, Lin Tan, M. Anna Zal, Philip L. Lorenzi, Kenneth Dunner Jr., Richard K. Yang, Russell R. Broaddus, Joseph Celestino, Nisha Gokul, Elizabeth Whitley, Deena M. Scoville, Tae Hoon Kim, Jae-Wook Jeong, Rosemarie Schmandt, Karen Lu, Hyun-Eui Kim, Melinda S. Yates
View: Text | PDF
Research Article Cell biology Oncology

Mitochondrial defects and metabolic vulnerabilities in Lynch syndrome–associated MSH2-deficient endometrial cancer

  • Text
  • PDF
Abstract

Lynch syndrome (LS), caused by inherited mutations in DNA mismatch repair genes, including MSH2, carries a 60% lifetime risk of developing endometrial cancer (EC). Beyond hypermutability, mechanisms driving LS-associated EC (LS-EC) remain unclear. We investigated MSH2 loss in EC pathogenesis using a mouse model (PR-Cre Msh2LoxP/LoxP, abbreviated Msh2KO), primary cell lines, human tissues, and human EC cells with isogenic MSH2 knockdown. By 8 months, 58% of Msh2KO mice developed endometrial atypical hyperplasia (AH), a precancerous lesion. At 12–16 months, 50% of Msh2KO mice exhibited either AH or ECs with histologic similarities to human LS-ECs. Transcriptomic profiling of EC from Msh2KO mice revealed mitochondrial dysfunction–related pathway changes. Subsequent studies in vitro and in vivo revealed mitochondrial dysfunction based on 2 mechanisms: mitochondrial content reduction and structural disruptions in retained mitochondria. Human LS-ECs also exhibited mitochondrial content reduction compared with non-LS-ECs. Functional studies demonstrated metabolic reprogramming of MSH2-deficient EC, including reduced oxidative phosphorylation and increased susceptibility to glycolysis suppression. These findings identified mitochondrial dysfunction and metabolic disruption as consequences of MSH2 deficiency in EC. Mitochondrial and metabolic aberrations should be evaluated as biomarkers for endometrial carcinogenesis or risk stratification and represent potential targets for cancer interception in women with LS.

Authors

Mikayla Borthwick Bowen, Brenda Melendez, Qian Zhang, Diana Moreno, Leah Peralta, Wai Kin Chan, Collene Jeter, Lin Tan, M. Anna Zal, Philip L. Lorenzi, Kenneth Dunner Jr., Richard K. Yang, Russell R. Broaddus, Joseph Celestino, Nisha Gokul, Elizabeth Whitley, Deena M. Scoville, Tae Hoon Kim, Jae-Wook Jeong, Rosemarie Schmandt, Karen Lu, Hyun-Eui Kim, Melinda S. Yates

×

Usage data is cumulative from February 2025 through December 2025.

Usage JCI PMC
Text version 2,043 309
PDF 645 95
Figure 408 0
Table 136 0
Supplemental data 680 13
Citation downloads 89 0
Totals 4,001 417
Total Views 4,418

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts