Mutations on genes encoding polycystin-1 (PC1) and PC2 cause autosomal-dominant polycystic kidney disease. How these 2 proteins work together to exert anticystogenesis remains elusive. PC1 resembles adhesion G-protein coupled receptors and undergoes autocleavage in the extracellular N-terminus to expose a hidden “stalk” region, which is hypothesized to act as a “tethered agonist.” Here, we show that WT PC1 and PC2 formed functional heteromeric channel complexes in Xenopus oocytes with different biophysical properties from PC2 homomeric channels. Deletion of PC1 N-terminus, which exposed the stalk, increased calcium permeability in PC1/PC2 heteromers that required the presence of stalk. Extracellular application of synthetic stalk peptide increased calcium permeation in stalkless PC1/PC2. Application of Wnt9B protein increased calcium permeability in PC1/PC2 but not in heteromers containing cleavage-resistant mutant PC1. Wnt9B interacted with N-terminal leucine-rich repeat (LRR) of PC1. Pretreatment with LRR blunted the increase in calcium permeability by Wnt9B. Thus, PC1 and PC2 form receptor-channel complexes that is activated by exposure of the stalk region following ligand binding to the PC1 N-terminus. The stalk peptide acts as a tethered agonist to activate PC1/PC2 by affecting ion selectivity of the complexes.
Runping Wang, Danish Idrees, Mohammad Amir, Biswajit Padhy, Jian Xie, Chou-Long Huang
Usage data is cumulative from September 2025 through January 2026.
| Usage | JCI | PMC |
|---|---|---|
| Text version | 1,288 | 62 |
| 590 | 13 | |
| Figure | 238 | 0 |
| Supplemental data | 132 | 20 |
| Citation downloads | 77 | 0 |
| Totals | 2,325 | 95 |
| Total Views | 2,420 | |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.