Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
A ratiometric catalog of protein isoform shifts in the cardiac fetal gene program
Yu Han, … , Edward Lau, Maggie P.Y. Lam
Yu Han, … , Edward Lau, Maggie P.Y. Lam
Published August 7, 2025
Citation Information: JCI Insight. 2025;10(18):e184309. https://doi.org/10.1172/jci.insight.184309.
View: Text | PDF
Research Article Aging Cardiology

A ratiometric catalog of protein isoform shifts in the cardiac fetal gene program

  • Text
  • PDF
Abstract

Pathological cardiac remodeling is associated with the reactivation of fetal genes, yet the extent of the heart’s fetal gene program and its impact on proteome compositions remain incompletely understood. Here, using a proteome-wide protein ratio quantification strategy with mass spectrometry, we identified pervasive isoform usage shifts in fetal and postnatal mouse hearts, involving 145 pairs of highly homologous paralogs and alternative splicing–derived isoform proteins. Proteome-wide ratio comparisons readily rediscovered hallmark fetal gene signatures in muscle contraction and glucose metabolism pathways, while revealing what we believe to be previously undescribed isoform usage in mitochondrial and gene-expression-regulating proteins, including PPA1/PPA2, ANT1/ANT2, and PCBP1/PCBP2 switches. Paralogs with differential fetal usage tend to be evolutionarily recent, consistent with functional diversification. Alternative splicing adds another rich source of fetal isoform usage differences, involving PKM M1/M2, GLS1 KGA/GAC, PDLIM5 long/short, and other spliceoforms. When comparing absolute protein proportions, we observed a partial reversion toward fetal gene usage in pathological hearts. In summary, we present a ratiometric catalog of paralogs and spliceoform pairs in the cardiac fetal gene program. More generally, the results demonstrate the potential of applying the proteome-wide ratio test concept to discover new regulatory modalities beyond differential gene expression.

Authors

Yu Han, Shaonil Binti, Sara A. Wennersten, Boomathi Pandi, Dominic C.M. Ng, Edward Lau, Maggie P.Y. Lam

×

Figure 8

Proteome-wide protein isoform ratio quantification in hiPSC cardiomyocyte (CM) differentiation.

Options: View larger image (or click on image) Download as PowerPoint
Proteome-wide protein isoform ratio quantification in hiPSC cardiomyocyt...
(A) PCA of the ratios of 666 paralog pairs and 28 spliceoform pairs largely distinguished hiPSC differentiation stages. Colors: biological replicate lines. (B) Number of statistically significant (limma FDR-adjusted P < 0.01, MIF ≥ 0.05) paralog pairs (left); spliceoform pairs (middle); and individual proteins (right) at each stage of differentiation, from hiPSC/mesoderm (days 0–2) to progenitors (days 3–6), early-CM (days 7–10), and CM (days 10–14). (C) Heatmap showing isoform pairs with significantly different usage in early-CM to CM transition. Colors: row-standardized ratios. (D) STRING enrichment (see Supplemental Methods) graph of proteins with differential isoform usage. Colors: FDR. (E) STRING network graph of proteins with differential isoform usage. Edge colors: STRING interaction type.

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts