Energy metabolism, through pathways such as oxidative phosphorylation (OxPhos) and glycolysis, plays a pivotal role in cellular differentiation and function. Our study investigates the impact of OxPhos disruption in cortical bone development by deleting Mitochondrial Transcription Factor A (TFAM). TFAM controls OxPhos by regulating the transcription of mitochondrial genes. The cortical bone, constituting the long bones' rigid shell, is sheathed by the periosteum, a connective tissue layer populated with skeletal progenitors that spawn osteoblasts, the bone-forming cells. TFAM-deficient mice presented with thinner cortical bone, spontaneous midshaft fractures, and compromised periosteal cell bioenergetics, characterized by reduced ATP levels. Additionally, they exhibited an enlarged periosteal progenitor cell pool with impaired osteoblast differentiation. Increasing Hypoxia-Inducible Factor 1a (HIF1) activity within periosteal cells significantly mitigated the detrimental effects induced by TFAM deletion. HIF1 is known to promote glycolysis in all cell types. Our findings underscore the indispensability of OxPhos for the proper accrual of cortical bone mass and indicate a compensatory mechanism between OxPhos and glycolysis in periosteal cells. The study opens new avenues for understanding the relationship between energy metabolism and skeletal health and suggests that modulating bioenergetic pathways may provide a therapeutic avenue for conditions characterized by bone fragility.
Mohd Parvez Khan, Elena Sabini, Katherine Beigel, Giulia Lanzolla, Brittany M. Laslow, Dian Wang, Christophe Merceron, Amato Giaccia, Fanxin Long, Deanne M. Taylor, Ernestina Schipani
Usage data is cumulative from August 2024 through September 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 412 | 0 |
133 | 0 | |
Supplemental data | 36 | 0 |
Citation downloads | 21 | 0 |
Totals | 602 | 0 |
Total Views | 602 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.