High apolipoprotein B–containing (apoB-containing) low-density lipoproteins (LDLs) and low apoA1–containing high-density lipoproteins (HDLs) are associated with atherosclerotic cardiovascular diseases. In search of a molecular regulator that could simultaneously and reciprocally control both LDL and HDL levels, we screened a microRNA (miR) library using human hepatoma Huh-7 cells. We identified miR-541-3p that both significantly decreases apoB and increases apoA1 expression by inducing mRNA degradation of 2 different transcription factors, Znf101 and Casz1. We found that Znf101 enhances apoB expression, while Casz1 represses apoA1 expression. The hepatic knockdown of Casz1 in mice increased plasma apoA1, HDL, and cholesterol efflux capacity. The hepatic knockdown of Zfp961, an ortholog of Znf101, reduced lipogenesis and production of triglyceride-rich lipoproteins and atherosclerosis, without causing hepatic lipid accumulation. This study identifies hepatic Znf101/Zfp961 and Casz1 as potential therapeutic targets to alter plasma lipoproteins and reduce atherosclerosis without causing liver steatosis.
Abulaish Ansari, Pradeep Kumar Yadav, Liye Zhou, Binu Prakash, Laraib Ijaz, Amanda Christiano, Sameer Ahmad, Antoine Rimbert, M. Mahmood Hussain
MiR-541-3p reciprocally regulates apoB and apoA1 secretion in human liver cells.