Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

The RNA receptor RIG-I binding synthetic oligodeoxynucleotide promotes pneumonia survival
Yongxing Wang, Vikram V. Kulkarni, Jezreel PantaleónGarcía, Michael K. Longmire, Mathilde Lethier, Stephen Cusack, Scott E. Evans
Yongxing Wang, Vikram V. Kulkarni, Jezreel PantaleónGarcía, Michael K. Longmire, Mathilde Lethier, Stephen Cusack, Scott E. Evans
View: Text | PDF
Research Article Cell biology Immunology

The RNA receptor RIG-I binding synthetic oligodeoxynucleotide promotes pneumonia survival

  • Text
  • PDF
Abstract

Pneumonia is a worldwide threat to public health, demanding novel preventative and therapeutic strategies. The lung epithelium is a critical environmental interface that functions as a physical barrier to pathogen invasion while also actively sensing and responding to pathogens. We have reported that stimulating lung epithelial cells with a combination therapeutic consisting of a diacylated lipopeptide and a synthetic CpG oligodeoxynucleotide (ODN) induces synergistic pneumonia protection against a wide range of pathogens. We report here that mice deficient in TLR9, the previously described receptor for ODN, still displayed partial ODN-induced protection. This prompted us to seek an alternate ODN receptor, and we discovered by mass spectroscopy that the RNA sensor RIG-I could also bind DNA-like ODN. ODN binding by RIG-I resulted in MAVS-dependent pneumonia-protective signaling events. While RIG-I is essential to native defenses against viral infections, we report that therapeutic RIG-I activation with ODN promoted pathogen killing and host survival following both viral and bacterial challenges. These data indicate that maximal ODN-induced pneumonia protection requires activation of both the TLR9/MyD88 and RIG-I/MAVS signaling pathways. These findings not only identify what we believe to be a novel pattern recognition receptor for DNA-like molecules, but reveal a potential therapeutic strategy to protect susceptible individuals against lethal pneumonias during periods of peak vulnerability.

Authors

Yongxing Wang, Vikram V. Kulkarni, Jezreel PantaleónGarcía, Michael K. Longmire, Mathilde Lethier, Stephen Cusack, Scott E. Evans

×

Usage data is cumulative from January 2025 through January 2026.

Usage JCI PMC
Text version 784 119
PDF 188 16
Figure 1,044 1
Supplemental data 114 8
Citation downloads 81 0
Totals 2,211 144
Total Views 2,355

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts