Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Citations to this article

CXCL9, CXCL10, and CCL19 synergistically recruit T lymphocytes to skin in lichen planus
Anna E. Kersh, Satish Sati, Jianhe Huang, Christina Murphy, Olivia Ahart, Thomas H. Leung
Anna E. Kersh, Satish Sati, Jianhe Huang, Christina Murphy, Olivia Ahart, Thomas H. Leung
View: Text | PDF
Research Article Dermatology

CXCL9, CXCL10, and CCL19 synergistically recruit T lymphocytes to skin in lichen planus

  • Text
  • PDF
Abstract

Lichen planus (LP) is a chronic, debilitating, inflammatory disease of the skin and mucous membranes that affects 1%–2% of Americans. Its molecular pathogenesis remains poorly understood, and there are no FDA-approved treatments. We performed single-cell RNA sequencing on paired blood and skin samples (lesional and nonlesional tissue) from 7 patients with LP. We discovered that LP keratinocytes and fibroblasts specifically secrete a combination of CXCL9, CXCL10, and CCL19 cytokines. Using an in vitro migration assay with primary human T cells, we demonstrated that CCL19 in combination with either of the other 2 cytokines synergistically enhanced recruitment of CD8+ T cells more than any individual cytokine. Moreover, exhausted T cells in lesional LP skin secreted CXCL13, which, along with CCL19, also enhanced recruitment of T cells, suggesting a feed-forward loop in LP. Finally, LP blood revealed decreased circulating naive CD8+ T cells compared with that in healthy volunteers, consistent with recruitment to skin. Molecular analysis of LP skin and blood samples increased our understanding of disease pathogenesis and identified CCL19 as a new therapeutic target for treatment.

Authors

Anna E. Kersh, Satish Sati, Jianhe Huang, Christina Murphy, Olivia Ahart, Thomas H. Leung

×

Loading citation information...
Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts