Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

All-trans retinoic acid inhibits glioblastoma progression and attenuates radiation-induced brain injury
Min Fu, … , Guangyuan Hu, Xiaohong Peng
Min Fu, … , Guangyuan Hu, Xiaohong Peng
Published November 8, 2024
Citation Information: JCI Insight. 2024;9(21):e179530. https://doi.org/10.1172/jci.insight.179530.
View: Text | PDF
Research Article Aging

All-trans retinoic acid inhibits glioblastoma progression and attenuates radiation-induced brain injury

  • Text
  • PDF
Abstract

Radiotherapy (RT) remains a primary treatment modality for glioblastoma (GBM), but it induces cellular senescence and is strongly implicated in GBM progression and RT-related injury. Recently, eliminating senescent cells has emerged as a promising strategy for treating cancer and for mitigating radiation-induced brain injury (RBI). Here, we investigated the impact of all-trans retinoic acid (RA) on radiation-induced senescence. The findings of this study revealed that RA effectively eliminated astrocytes, which are particularly prone to senescence after radiation, and that the removal of senescence-associated secretory phenotype factor–producing astrocytes inhibited GBM cell proliferation in vitro. Moreover, RA-mediated clearance of senescent cells improved survival in GBM-bearing mice and alleviated radiation-induced cognitive impairment. Through RNA sequencing, we found that the AKT/mTOR/PPARγ/Plin4 signaling pathway is involved in RA-mediated clearance of senescent cells. In summary, these results suggest that RA could be a potential senolytic drug for preventing GBM progression and improving RBI.

Authors

Min Fu, Yiling Zhang, Bi Peng, Na Luo, Yuanyuan Zhang, Wenjun Zhu, Feng Yang, Ziqi Chen, Qiang Zhang, Qianxia Li, Xin Chen, Yuanhui Liu, Guoxian Long, Guangyuan Hu, Xiaohong Peng

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 2,191 684
PDF 206 140
Figure 421 0
Supplemental data 207 36
Citation downloads 96 0
Totals 3,121 860
Total Views 3,981

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts