The skin at the site of HSV-2 reactivation is enriched for HSV-2–specific T cells. To evaluate whether an immunotherapeutic vaccine could elicit skin-based memory T cells, we studied skin biopsies and HSV-2–reactive CD4+ T cells from PBMCs by T cell receptor (TCR) β chain (TRB) sequencing before and after vaccination with a replication-incompetent whole-virus HSV-2 vaccine candidate (HSV529). The representation of HSV-2–reactive CD4+ TRB sequences from PBMCs in the skin TRB repertoire increased after the first vaccine dose. We found sustained expansion after vaccination of unique, skin-based T cell clonotypes that were not detected in HSV-2–reactive CD4+ T cells isolated from PBMCs. In one participant, a switch in immunodominance occurred with the emergence of a TCR αβ pair after vaccination that was not detected in blood. This TCRαβ was shown to be HSV-2 reactive by expression of a synthetic TCR in a Jurkat-based NR4A1 reporter system. The skin in areas of HSV-2 reactivation possessed an oligoclonal TRB repertoire that was distinct from the circulation. Defining the influence of therapeutic vaccination on the HSV-2–specific TRB repertoire requires tissue-based evaluation.
Emily S. Ford, Alvason Z. Li, Kerry J. Laing, Lichun Dong, Kurt Diem, Lichen Jing, Koshlan Mayer-Blackwell, Krithi Basu, Mariliis Ott, Jim Tartaglia, Sanjay Gurunathan, Jack L. Reid, Matyas Ecsedi, Aude G. Chapuis, Meei-Li Huang, Amalia S. Magaret, Christine Johnston, Jia Zhu, David M. Koelle, Lawrence Corey
Usage data is cumulative from July 2024 through November 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 1,156 | 23 |
379 | 15 | |
Figure | 281 | 0 |
Table | 24 | 0 |
Supplemental data | 82 | 0 |
Citation downloads | 65 | 0 |
Totals | 1,987 | 38 |
Total Views | 2,025 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.