The skin at the site of HSV-2 reactivation is enriched for HSV-2–specific T cells. To evaluate whether an immunotherapeutic vaccine could elicit skin-based memory T cells, we studied skin biopsies and HSV-2–reactive CD4+ T cells from PBMCs by T cell receptor (TCR) β chain (TRB) sequencing before and after vaccination with a replication-incompetent whole-virus HSV-2 vaccine candidate (HSV529). The representation of HSV-2–reactive CD4+ TRB sequences from PBMCs in the skin TRB repertoire increased after the first vaccine dose. We found sustained expansion after vaccination of unique, skin-based T cell clonotypes that were not detected in HSV-2–reactive CD4+ T cells isolated from PBMCs. In one participant, a switch in immunodominance occurred with the emergence of a TCR αβ pair after vaccination that was not detected in blood. This TCRαβ was shown to be HSV-2 reactive by expression of a synthetic TCR in a Jurkat-based NR4A1 reporter system. The skin in areas of HSV-2 reactivation possessed an oligoclonal TRB repertoire that was distinct from the circulation. Defining the influence of therapeutic vaccination on the HSV-2–specific TRB repertoire requires tissue-based evaluation.
Emily S. Ford, Alvason Z. Li, Kerry J. Laing, Lichun Dong, Kurt Diem, Lichen Jing, Koshlan Mayer-Blackwell, Krithi Basu, Mariliis Ott, Jim Tartaglia, Sanjay Gurunathan, Jack L. Reid, Matyas Ecsedi, Aude G. Chapuis, Meei-Li Huang, Amalia S. Magaret, Christine Johnston, Jia Zhu, David M. Koelle, Lawrence Corey
Number, fold change, and clonality of TCR clonotypes in HSV lesion site and arm biopsies before and after vaccination.