Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Gα11 deficiency increases fibroblast growth factor 23 levels in a mouse model of familial hypocalciuric hypercalcemia
Birol Ay, Sajin Marcus Cyr, Kaitlin Klovdahl, Wen Zhou, Christina M. Tognoni, Yorihiro Iwasaki, Eugene P Rhee, Alpaslan Dedeoglu, Petra Simic, Murat Bastepe
Birol Ay, Sajin Marcus Cyr, Kaitlin Klovdahl, Wen Zhou, Christina M. Tognoni, Yorihiro Iwasaki, Eugene P Rhee, Alpaslan Dedeoglu, Petra Simic, Murat Bastepe
View: Text | PDF
Research Article Endocrinology

Gα11 deficiency increases fibroblast growth factor 23 levels in a mouse model of familial hypocalciuric hypercalcemia

  • Text
  • PDF
Abstract

Fibroblast growth factor 23 (FGF23) production has recently been shown to increase downstream of Gαq/11-PKC signaling in osteocytes. Inactivating mutations in the gene encoding Gα11 (GNA11) cause familial hypocalciuric hypercalcemia (FHH) due to impaired calcium-sensing receptor signaling. We explored the effect of Gα11 deficiency on FGF23 production in mice with heterozygous (Gna11+/–) or homozygous (Gna11–/–) ablation of Gna11. Both Gna11+/– and Gna11–/– mice demonstrated hypercalcemia and mildly raised parathyroid hormone levels, consistent with FHH. Strikingly, these mice also displayed increased serum levels of total and intact FGF23 and hypophosphatemia. Gna11–/– mice showed augmented Fgf23 mRNA levels in the liver and heart, but not in bone or bone marrow, and also showed evidence of systemic inflammation with elevated serum IL-1β levels. Furin gene expression was significantly increased in the Gna11–/– liver, suggesting enhanced FGF23 cleavage despite the observed rise in circulating intact FGF23 levels. Gna11–/– mice had normal renal function and reduced serum levels of glycerol-3-phosphate, excluding kidney injury as the primary cause of elevated intact FGF23 levels. Thus, Gα11 ablation caused systemic inflammation and excess serum FGF23 in mice, suggesting that patients with FHH — at least those with GNA11 mutations — may be at risk for these complications.

Authors

Birol Ay, Sajin Marcus Cyr, Kaitlin Klovdahl, Wen Zhou, Christina M. Tognoni, Yorihiro Iwasaki, Eugene P Rhee, Alpaslan Dedeoglu, Petra Simic, Murat Bastepe

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 756 110
PDF 155 21
Figure 215 0
Supplemental data 131 4
Citation downloads 94 0
Totals 1,351 135
Total Views 1,486

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts