Abstract

Fibroblast growth factor 23 (FGF23) production has recently been shown to increase downstream of Gαq/11-PKC signaling in osteocytes. Inactivating mutations in the gene encoding Gα11 (GNA11) cause familial hypocalciuric hypercalcemia (FHH) due to impaired calcium-sensing receptor signaling. We explored the effect of Gα11 deficiency on FGF23 production in mice with heterozygous (Gna11+/–) or homozygous (Gna11–/–) ablation of Gna11. Both Gna11+/– and Gna11–/– mice demonstrated hypercalcemia and mildly raised parathyroid hormone levels, consistent with FHH. Strikingly, these mice also displayed increased serum levels of total and intact FGF23 and hypophosphatemia. Gna11–/– mice showed augmented Fgf23 mRNA levels in the liver and heart, but not in bone or bone marrow, and also showed evidence of systemic inflammation with elevated serum IL-1β levels. Furin gene expression was significantly increased in the Gna11–/– liver, suggesting enhanced FGF23 cleavage despite the observed rise in circulating intact FGF23 levels. Gna11–/– mice had normal renal function and reduced serum levels of glycerol-3-phosphate, excluding kidney injury as the primary cause of elevated intact FGF23 levels. Thus, Gα11 ablation caused systemic inflammation and excess serum FGF23 in mice, suggesting that patients with FHH — at least those with GNA11 mutations — may be at risk for these complications.

Authors

Birol Ay, Sajin Marcus Cyr, Kaitlin Klovdahl, Wen Zhou, Christina M. Tognoni, Yorihiro Iwasaki, Eugene P Rhee, Alpaslan Dedeoglu, Petra Simic, Murat Bastepe

×

Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.

Advertisement