Abstract

Type 1 diabetes (T1D) is precipitated by the autoimmune destruction of the insulin-producing β cells in the pancreatic islets of Langerhans. Chemokines have been identified as major conductors of islet infiltration by autoaggressive leukocytes, including antigen-presenting cells and islet autoantigen–specific T cells. We have previously generated a road map of gene expression in the islet microenvironment during T1D in a mouse model and found that most of the chemokine axes are chronically upregulated during T1D. The XCL1/XCR1 chemokine axis is of particular interest, since XCR1 is exclusively expressed on conventional DCs type 1 (cDC1) that excel by their high capacity for T cell activation. Here, we demonstrate that cDC1-expressing XCR1 are present in and around the islets of patients with T1D and of individuals with islet autoantibody positivity. Furthermore, we show that XCL1 plays an important role in the attraction of highly potent DCs expressing XCR1 to the islets in an inducible mouse model for T1D. XCL1-deficient mice display a diminished infiltration of XCR1+ cDC1 and, subsequently, a reduced magnitude and activity of islet autoantigen–specific T cells, resulting in a profound decrease in T1D incidence. Interference with the XCL1/XCR1 chemokine axis might constitute a novel therapy for T1D.

Authors

Camilla Tondello, Christine Bender, Gregory J. Golden, Deborah Puppe, Elisa Blickberndt, Monika Bayer, Giulia K. Buchmann, Josef Pfeilschifter, Malte Bachmann, Edith Hintermann, Ralf P. Brandes, Michael R. Betts, Richard A. Kroczek, Urs Christen

×

Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.

Advertisement