Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
NADPH oxidase in B cells and macrophages protects against murine lupus by regulation of TLR7
Rachael A. Gordon, … , Kevin M. Nickerson, Mark J. Shlomchik
Rachael A. Gordon, … , Kevin M. Nickerson, Mark J. Shlomchik
Published July 23, 2024
Citation Information: JCI Insight. 2024;9(16):e178563. https://doi.org/10.1172/jci.insight.178563.
View: Text | PDF
Research Article

NADPH oxidase in B cells and macrophages protects against murine lupus by regulation of TLR7

  • Text
  • PDF
Abstract

Loss of NADPH oxidase (NOX2) exacerbates systemic lupus erythematosus (SLE) in mice and humans, but the mechanisms underlying this effect remain unclear. To identify the cell lineages in which NOX2 deficiency drives SLE, we employed conditional KO and chimeric approaches to delete Cybb in several hematopoietic cell lineages of MRL.Faslpr SLE-prone mice. Deletion of Cybb in macrophages/monocytes exacerbated SLE nephritis, though not to the degree observed in the Cybb global KOs. Unexpectedly, the absence of Cybb in B cells resulted in profound glomerulonephritis and interstitial nephritis, rivaling that seen with global deletion. Furthermore, we identified that NOX2 is a key regulator of TLR7, a driver of SLE pathology, both globally and specifically in B cells. This is mediated in part through suppression of TLR7-mediated NF-κB signaling in B cells. Thus, NOX2’s immunomodulatory effect in SLE is orchestrated not only by its function in the myeloid compartment, but through a pivotal role in B cells by selectively inhibiting TLR7 signaling.

Authors

Rachael A. Gordon, Haylee A. Cosgrove, Anthony Marinov, Sebastien Gingras, Jeremy S. Tilstra, Allison M. Campbell, Sheldon I. Bastacky, Michael Kashgarian, Andras Perl, Kevin M. Nickerson, Mark J. Shlomchik

×

Full Text PDF

Download PDF (5.40 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts