Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

GCN2 kinase activation mediates pulmonary vascular remodeling and pulmonary arterial hypertension
Maggie M. Zhu, Jingbo Dai, Zhiyu Dai, Yi Peng, You-Yang Zhao
Maggie M. Zhu, Jingbo Dai, Zhiyu Dai, Yi Peng, You-Yang Zhao
View: Text | PDF
Research Article Vascular biology

GCN2 kinase activation mediates pulmonary vascular remodeling and pulmonary arterial hypertension

  • Text
  • PDF
Abstract

Pulmonary arterial hypertension (PAH) is characterized by progressive increase of pulmonary vascular resistance and remodeling that result in right heart failure. Recessive mutations of EIF2AK4 gene (encoding general control nonderepressible 2 kinase, GCN2) are linked to heritable pulmonary veno-occlusive disease (PVOD) in patients but rarely in patients with PAH. The role of GCN2 kinase activation in the pathogenesis of PAH remains unclear. Here, we show that GCN2 was hyperphosphorylated and activated in pulmonary vascular endothelial cells (ECs) of hypoxic mice, monocrotaline-treated rats, and patients with idiopathic PAH. Unexpectedly, loss of GCN2 kinase activity in Eif2ak4–/– mice with genetic disruption of the kinase domain induced neither PVOD nor pulmonary hypertension (PH) but inhibited hypoxia-induced PH. RNA-sequencing analysis suggested endothelin-1 (Edn1) as a downstream target of GCN2. GCN2 mediated hypoxia-induced Edn1 expression in human lung ECs via HIF-2α. Restored Edn1 expression in ECs of Eif2ak4–/– mice partially reversed the reduced phenotype of hypoxia-induced PH. Furthermore, GCN2 kinase inhibitor A-92 treatment attenuated PAH in monocrotaline-treated rats. These studies demonstrate that GCN2 kinase activation mediates pulmonary vascular remodeling and PAH at least partially through Edn1. Thus, targeting GCN2 kinase activation is a promising therapeutic strategy for treatment of PAH in patients without EIF2AK4 loss-of-function mutations.

Authors

Maggie M. Zhu, Jingbo Dai, Zhiyu Dai, Yi Peng, You-Yang Zhao

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 2,390 789
PDF 276 189
Figure 459 9
Table 76 0
Supplemental data 143 36
Citation downloads 92 0
Totals 3,436 1,023
Total Views 4,459

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts