Mutations in the CLCNKB gene (1p36), encoding the basolateral chloride channel ClC-Kb, cause type 3 Bartter syndrome. We identified a family with a mixed Bartter/Gitelman phenotype and early-onset kidney failure and by employing a candidate gene approach, identified what we believe is a novel homozygous mutation (CLCNKB c.499G>T [p.Gly167Cys]) in exon 6 of CLCNKB in the index patient. We then validated these results with Sanger and whole-exome sequencing. Compared with wild-type ClC-Kb, the Gly167Cys mutant conducted less current and exhibited impaired complex N-linked glycosylation in vitro. We demonstrated that loss of Gly-167, rather than gain of a mutant Cys, impairs complex glycosylation, but that surface expression remains intact. Moreover, Asn-364 was necessary for channel function and complex glycosylation. Morphologic evaluation of human kidney biopsies revealed typical basolateral localization of mutant Gly167Cys ClC-Kb in cortical distal tubular epithelia. However, we detected attenuated expression of distal sodium transport proteins, changes in abundance of distal tubule segments, and hypokalemia-associated intracellular condensates from the index patient compared with control nephrectomy specimens. The present data establish what we believe are novel regulatory mechanisms of ClC-Kb activity and demonstrate nephron remodeling in humans, caused by mutant ClC-Kb, with implications for renal electrolyte handling, blood pressure control, and kidney disease.
Yogita Sharma, Robin Lo, Viktor N. Tomilin, Kotdaji Ha, Holly Deremo, Aishwarya V. Pareek, Wuxing Dong, Xiaohui Liao, Svetlana Lebedeva, Vivek Charu, Neeraja Kambham, Kerim Mutig, Oleh Pochynyuk, Vivek Bhalla
Usage data is cumulative from October 2024 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 902 | 0 |
352 | 0 | |
Figure | 75 | 0 |
Table | 9 | 0 |
Supplemental data | 102 | 0 |
Citation downloads | 35 | 0 |
Totals | 1,475 | 0 |
Total Views | 1,475 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.