Daptomycin is a last-resort lipopeptide antibiotic that disrupts cell membrane (CM) and peptidoglycan homeostasis. Enterococcus faecalis has developed a sophisticated mechanism to avoid daptomycin killing by redistributing CM anionic phospholipids away from the septum. The CM changes are orchestrated by a 3-component regulatory system, designated LiaFSR, with a possible contribution of cardiolipin synthase (Cls). However, the mechanism by which LiaFSR controls the CM response and the role of Cls are unknown. Here, we show that cardiolipin synthase activity is essential for anionic phospholipid redistribution and daptomycin resistance since deletion of the 2 genes (cls1 and cls2) encoding Cls abolished CM remodeling. We identified LiaY, a transmembrane protein regulated by LiaFSR, and Cls1 as important mediators of CM remodeling required for redistribution of anionic phospholipid microdomains. Together, our insights provide a mechanistic framework on the enterococcal response to cell envelope antibiotics that could be exploited therapeutically.
April H. Nguyen, Truc T. Tran, Diana Panesso, Kara S. Hood, Vinathi Polamraju, Rutan Zhang, Ayesha Khan, William R. Miller, Eugenia Mileykovskaya, Yousif Shamoo, Libin Xu, Heidi Vitrac, Cesar A. Arias
Usage data is cumulative from October 2024 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 662 | 3 |
290 | 3 | |
Figure | 60 | 0 |
Table | 21 | 0 |
Supplemental data | 64 | 0 |
Citation downloads | 42 | 0 |
Totals | 1,139 | 6 |
Total Views | 1,145 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.