Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
EZH2 deletion does not affect acinar regeneration but restricts progression to pancreatic cancer in mice
Emilie Jaune-Pons, Xiaoyi Wang, Fatemeh Mousavi, Zachary Klassen, Abdessamad El Kaoutari, Kurt Berger, Charis Johnson, Mickenzie B. Martin, Saloni Aggarwal, Sukhman Brar, Muhammad Khalid, Joanna F. Ryan, Parisa Shooshtari, Angela J. Mathison, Nelson Dusetti, Raul Urrutia, Gwen Lomberk, Christopher L. Pin
Emilie Jaune-Pons, Xiaoyi Wang, Fatemeh Mousavi, Zachary Klassen, Abdessamad El Kaoutari, Kurt Berger, Charis Johnson, Mickenzie B. Martin, Saloni Aggarwal, Sukhman Brar, Muhammad Khalid, Joanna F. Ryan, Parisa Shooshtari, Angela J. Mathison, Nelson Dusetti, Raul Urrutia, Gwen Lomberk, Christopher L. Pin
View: Text | PDF
Research Article Oncology

EZH2 deletion does not affect acinar regeneration but restricts progression to pancreatic cancer in mice

  • Text
  • PDF
Abstract

Enhancer of zeste homologue 2 (EZH2) is part of the Polycomb Repressor Complex 2, which promotes trimethylation of lysine 27 on histone 3 (H3K27me3) and gene repression. EZH2 is overexpressed in many cancers, and studies in mice attributed both prooncogenic and tumor suppressive functions to EZH2 in pancreatic ductal adenocarcinoma (PDAC). EZH2 deletion enhances de novo KRAS-driven neoplasia following pancreatic injury, while increased EZH2 expression in patients with PDAC is correlated to poor prognosis, suggesting a context-dependant effect for EZH2 in PDAC progression. In this study, we examined EZH2 in pre- and early neoplastic stages of PDAC. Using an inducible model to delete the SET domain of EZH2 in adult acinar cells (EZH2ΔSET), we showed that loss of EZH2 activity did not prevent acinar cell regeneration in the absence of oncogenic KRAS (KRASG12D) nor did it increase PanIN formation following KRASG12D activation in adult mice. Loss of EZH2 did reduce recruitment of inflammatory cells and, when combined with a more aggressive PDAC model, promoted widespread PDAC progression and remodeling of the tumor microenvironment. This study suggests that expression of EZH2 in adult acinar cells restricts PDAC initiation and progression by affecting both the tumor microenvironment and acinar cell differentiation.

Authors

Emilie Jaune-Pons, Xiaoyi Wang, Fatemeh Mousavi, Zachary Klassen, Abdessamad El Kaoutari, Kurt Berger, Charis Johnson, Mickenzie B. Martin, Saloni Aggarwal, Sukhman Brar, Muhammad Khalid, Joanna F. Ryan, Parisa Shooshtari, Angela J. Mathison, Nelson Dusetti, Raul Urrutia, Gwen Lomberk, Christopher L. Pin

×
Options: View larger image (or click on image) Download as PowerPoint
Analysis of H3K27me3 and H3K27me3 enrichment in pancreatic tissue

Analysis of H3K27me3 and H3K27me3 enrichment in pancreatic tissue


Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts