Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Failure to breathe persists without air hunger or alarm following amygdala seizures
Gail I.S. Harmata, Ariane E. Rhone, Christopher K. Kovach, Sukhbinder Kumar, Md Rakibul Mowla, Rup K. Sainju, Yasunori Nagahama, Hiroyuki Oya, Brian K. Gehlbach, Michael A. Ciliberto, Rashmi N. Mueller, Hiroto Kawasaki, Kyle T.S. Pattinson, Kristina Simonyan, Paul W. Davenport, Matthew A. Howard III, Mitchell Steinschneider, Aubrey C. Chan, George B. Richerson, John A. Wemmie, Brian J. Dlouhy
Gail I.S. Harmata, Ariane E. Rhone, Christopher K. Kovach, Sukhbinder Kumar, Md Rakibul Mowla, Rup K. Sainju, Yasunori Nagahama, Hiroyuki Oya, Brian K. Gehlbach, Michael A. Ciliberto, Rashmi N. Mueller, Hiroto Kawasaki, Kyle T.S. Pattinson, Kristina Simonyan, Paul W. Davenport, Matthew A. Howard III, Mitchell Steinschneider, Aubrey C. Chan, George B. Richerson, John A. Wemmie, Brian J. Dlouhy
View: Text | PDF
Research Article Neuroscience

Failure to breathe persists without air hunger or alarm following amygdala seizures

  • Text
  • PDF
Abstract

Postictal apnea is thought to be a major cause of sudden unexpected death in epilepsy (SUDEP). However, the mechanisms underlying postictal apnea are unknown. To understand causes of postictal apnea, we used a multimodal approach to study brain mechanisms of breathing control in 20 patients (ranging from pediatric to adult) undergoing intracranial electroencephalography for intractable epilepsy. Our results indicate that amygdala seizures can cause postictal apnea. Moreover, we identified a distinct region within the amygdala where electrical stimulation was sufficient to reproduce prolonged breathing loss persisting well beyond the end of stimulation. The persistent apnea was resistant to rising CO2 levels, and air hunger failed to occur, suggesting impaired CO2 chemosensitivity. Using es-fMRI, a potentially novel approach combining electrical stimulation with functional MRI, we found that amygdala stimulation altered blood oxygen level–dependent (BOLD) activity in the pons/medulla and ventral insula. Together, these findings suggest that seizure activity in a focal subregion of the amygdala is sufficient to suppress breathing and air hunger for prolonged periods of time in the postictal period, likely via brainstem and insula sites involved in chemosensation and interoception. They further provide insights into SUDEP, may help identify those at greatest risk, and may lead to treatments to prevent SUDEP.

Authors

Gail I.S. Harmata, Ariane E. Rhone, Christopher K. Kovach, Sukhbinder Kumar, Md Rakibul Mowla, Rup K. Sainju, Yasunori Nagahama, Hiroyuki Oya, Brian K. Gehlbach, Michael A. Ciliberto, Rashmi N. Mueller, Hiroto Kawasaki, Kyle T.S. Pattinson, Kristina Simonyan, Paul W. Davenport, Matthew A. Howard III, Mitchell Steinschneider, Aubrey C. Chan, George B. Richerson, John A. Wemmie, Brian J. Dlouhy

×

Figure 6

Persistent postictal apnea and post-stimulation apnea were not due to ongoing seizure activity or other correlated neural activity in amygdala.

Options: View larger image (or click on image) Download as PowerPoint
Persistent postictal apnea and post-stimulation apnea were not due to on...
(A) Time-frequency representation of the peri-ictal period for subjects P413, P457, and P466. iEEG during seizure trials indicates an increase in power (warmer colors) during the seizures but no consistent changes in the spectrotemporal response properties in the persistent apnea period. Respiratory trace shown above time-frequency plots identifies the apneas and disrupted breathing from stimulation-evoked seizure. (B) Stimulation without seizure also shows no consistent spectrotemporal changes associated with the post-stimulation apneas. (C) Extended view of 2 subjects who had persistent apneas longer than 5 minutes, P413 and P384. No changes were observed over the entire period of persistent postictal and post-stimulation apneas. (D) iEEG power changes before versus during postictal or post-stimulation apneas. Each dot represents a value from 1 patient; gray bars indicate means across patients. No significant power changes were seen in any of the canonical iEEG frequency bands (delta 1–4 Hz, theta 4–8 Hz, alpha 8–12 Hz, beta 13–30 Hz, low gamma 30–80 Hz, high gamma 80–150 Hz). (E) No significant correlation between the respiratory signal and the envelope of each canonical EEG band was observed. Each dot represents a value from 1 patient; gray bars indicate means across patients.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts