DNA repair is essential for preserving genome integrity. Podocytes, postmitotic epithelial cells of the kidney filtration unit, bear limited regenerative capacity, yet their survival is indispensable for kidney health. Podocyte loss is a hallmark of the aging process and of many diseases, but the underlying factors remain unclear. We investigated the consequences of DNA damage in a podocyte-specific knockout mouse model for DNA excision repair protein Ercc1 and in cultured podocytes under genomic stress. Furthermore, we characterized DNA damage-related alterations in mouse and human renal tissue of different ages and patients with minimal change disease and focal segmental glomerulosclerosis. Ercc1 knockout resulted in accumulation of DNA damage and ensuing albuminuria and kidney disease. Podocytes reacted to genomic stress by activating mTOR complex 1 (mTORC1) signaling in vitro and in vivo. This was abrogated by inhibiting DNA damage signaling through DNA-dependent protein kinase (DNA-PK) and ataxia teleangiectasia mutated (ATM) kinases, and inhibition of mTORC1 modulated the development of glomerulosclerosis. Perturbed DNA repair gene expression and genomic stress in podocytes were also detected in focal segmental glomerulosclerosis. Beyond that, DNA damage signaling occurred in podocytes of healthy aging mice and humans. We provide evidence that genome maintenance in podocytes is linked to the mTORC1 pathway and is involved in the aging process as well as the development of glomerulosclerosis.
Fabian Braun, Amrei M. Mandel, Linda Blomberg, Milagros N. Wong, Georgia Chatzinikolaou, David H. Meyer, Anna Reinelt, Viji Nair, Roman Akbar-Haase, Phillip J. McCown, Fabian Haas, He Chen, Mahdieh Rahmatollahi, Damian Fermin, Robin Ebbestad, Gisela G. Slaats, Tillmann Bork, Christoph Schell, Sybille Koehler, Paul T. Brinkkoetter, Maja T. Lindenmeyer, Clemens D. Cohen, Martin Kann, David Unnersjö-Jess, Wilhelm Bloch, Matthew G. Sampson, Martijn E.T. Dollé, Victor G. Puelles, Matthias Kretzler, George A. Garinis, Tobias B. Huber, Bernhard Schermer, Thomas Benzing, Björn Schumacher, Christine E. Kurschat
Usage data is cumulative from May 2025 through December 2025.
| Usage | JCI | PMC |
|---|---|---|
| Text version | 2,225 | 122 |
| 443 | 41 | |
| Figure | 437 | 1 |
| Supplemental data | 340 | 9 |
| Citation downloads | 73 | 0 |
| Totals | 3,518 | 173 |
| Total Views | 3,691 | |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.