Tuberculosis has the highest mortality rate worldwide for a chronic infectious disease caused by a single pathogen. RNA-binding proteins (RBPs) are involved in autophagy — a key defense mechanism against Mycobacterium tuberculosis (M. tuberculosis) infection — by modulating RNA stability and forming intricate regulatory networks. However, the functions of host RBPs during M. tuberculosis infection remain relatively unexplored. Zinc finger NFX1-type containing 1 (ZNFX1), a conserved RBP critically involved in immune deficiency diseases and mycobacterial infections, is significantly upregulated in M. tuberculosis–infected macrophages. Here, we aimed to explore the immunoregulatory functions of ZNFX1 during M. tuberculosis infection. We observed that Znfx1 knockout markedly compromised the multifaceted immune responses mediated by macrophages. This compromise resulted in reduced phagocytosis, suppressed macrophage activation, increased M. tuberculosis burden, progressive lung tissue injury, and chronic inflammation in M. tuberculosis–infected mice. Mechanistic investigations revealed that the absence of ZNFX1 inhibited autophagy, consequently mediating immune suppression. ZNFX1 critically maintained AMPK-regulated autophagic flux by stabilizing protein kinase AMP-activated catalytic subunit alpha 2 mRNA, which encodes a key catalytic α subunit of AMPK, through its zinc finger region. This process contributed to M. tuberculosis growth suppression. These findings reveal a function of ZNFX1 in establishing anti–M. tuberculosis immune responses, enhancing our understanding of the roles of RBPs in tuberculosis immunity and providing a promising approach to bolster antituberculosis immunotherapy.
Honglin Liu, Zhenyu Han, Liru Chen, Jing Zhang, Zhanqing Zhang, Yaoxin Chen, Feichang Liu, Ke Wang, Jieyu Liu, Na Sai, Xinying Zhou, Chaoying Zhou, Shengfeng Hu, Qian Wen, Li Ma
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 1,573 | 532 |
247 | 148 | |
Figure | 317 | 1 |
Supplemental data | 285 | 31 |
Citation downloads | 86 | 0 |
Totals | 2,508 | 712 |
Total Views | 3,220 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.