Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
ZNFX1 promotes AMPK-mediated autophagy against Mycobacterium tuberculosis by stabilizing Prkaa2 mRNA
Honglin Liu, Zhenyu Han, Liru Chen, Jing Zhang, Zhanqing Zhang, Yaoxin Chen, Feichang Liu, Ke Wang, Jieyu Liu, Na Sai, Xinying Zhou, Chaoying Zhou, Shengfeng Hu, Qian Wen, Li Ma
Honglin Liu, Zhenyu Han, Liru Chen, Jing Zhang, Zhanqing Zhang, Yaoxin Chen, Feichang Liu, Ke Wang, Jieyu Liu, Na Sai, Xinying Zhou, Chaoying Zhou, Shengfeng Hu, Qian Wen, Li Ma
View: Text | PDF
Research Article Immunology Infectious disease

ZNFX1 promotes AMPK-mediated autophagy against Mycobacterium tuberculosis by stabilizing Prkaa2 mRNA

  • Text
  • PDF
Abstract

Tuberculosis has the highest mortality rate worldwide for a chronic infectious disease caused by a single pathogen. RNA-binding proteins (RBPs) are involved in autophagy — a key defense mechanism against Mycobacterium tuberculosis (M. tuberculosis) infection — by modulating RNA stability and forming intricate regulatory networks. However, the functions of host RBPs during M. tuberculosis infection remain relatively unexplored. Zinc finger NFX1-type containing 1 (ZNFX1), a conserved RBP critically involved in immune deficiency diseases and mycobacterial infections, is significantly upregulated in M. tuberculosis–infected macrophages. Here, we aimed to explore the immunoregulatory functions of ZNFX1 during M. tuberculosis infection. We observed that Znfx1 knockout markedly compromised the multifaceted immune responses mediated by macrophages. This compromise resulted in reduced phagocytosis, suppressed macrophage activation, increased M. tuberculosis burden, progressive lung tissue injury, and chronic inflammation in M. tuberculosis–infected mice. Mechanistic investigations revealed that the absence of ZNFX1 inhibited autophagy, consequently mediating immune suppression. ZNFX1 critically maintained AMPK-regulated autophagic flux by stabilizing protein kinase AMP-activated catalytic subunit alpha 2 mRNA, which encodes a key catalytic α subunit of AMPK, through its zinc finger region. This process contributed to M. tuberculosis growth suppression. These findings reveal a function of ZNFX1 in establishing anti–M. tuberculosis immune responses, enhancing our understanding of the roles of RBPs in tuberculosis immunity and providing a promising approach to bolster antituberculosis immunotherapy.

Authors

Honglin Liu, Zhenyu Han, Liru Chen, Jing Zhang, Zhanqing Zhang, Yaoxin Chen, Feichang Liu, Ke Wang, Jieyu Liu, Na Sai, Xinying Zhou, Chaoying Zhou, Shengfeng Hu, Qian Wen, Li Ma

×

Figure 5

AMPKα2-mediated regulatory effects of ZNFX1 on autophagy and macrophage activity.

Options: View larger image (or click on image) Download as PowerPoint
AMPKα2-mediated regulatory effects of ZNFX1 on autophagy and macrophage ...
(A) High-throughput RNA sequencing analysis of H37Rv-infected (MOI = 2) WT and Znfx1–/– BMDMs at 6 and 24 hpi identified Prkaa2 as the downstream target of ZNFX1. (B and C) Expression levels of Prkaa2 and its coded protein AMPKα2 following H37Rv (MOI = 2) in WT and Znfx1–/– BMDMs, using qPCR (B) and Western blotting (C), respectively. (D) Double-staining immunofluorescence assays of p-AMPK in F4/80+ macrophages in the lung and spleen tissues of WT and Znfx1–/– mice following H37Rv infection (n = 5, with 5 randomly selected fields of view for statistics). “Pearson’s R value” refers to Pearson’s correlation coefficient. (E) Flow cytometry analysis of red fluorescence–positive WT and Znfx1–/– BMDMs treated with EX229, followed by infection with H37Rv-RFP (MOI = 10, n = 4). (F and G) CFU assays of intracellular M. tuberculosis levels in H37Rv-infected (MOI = 5) WT and Znfx1–/– BMDMs (F) and ZNFX1-silenced hMDMs (G) following EX229 treatment (n = 4). si, siRNA. (H) Flow cytometry analysis of CD80, CD86, and MHC-II expression on the surface of WT and Znfx1–/– BMDMs treated with EX229 and infected with H37Rv (MOI = 2, n = 3). A 2-way ANOVA with Holm-Šídák post hoc test (B and E–H) or an unpaired 2-tailed t test (D) was used for statistical analysis. Data are presented as mean ± SD and are representative of at least 3 experiments with similar observations. **P < 0.01; ***P < 0.001; ****P < 0.0001.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts