Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

GADD45A is a mediator of mitochondrial loss, atrophy, and weakness in skeletal muscle
George R. Marcotte, Matthew J. Miller, Hawley E. Kunz, Zachary C. Ryan, Matthew D. Strub, Patrick M. Vanderboom, Carrie J. Heppelmann, Sarah Chau, Zachary D. Von Ruff, Sean P. Kilroe, Andrew T. McKeen, Jason M. Dierdorff, Jennifer I. Stern, Karl A. Nath, Chad E. Grueter, Vitor A. Lira, Andrew R. Judge, Blake B. Rasmussen, K. Sreekumaran Nair, Ian R. Lanza, Scott M. Ebert, Christopher M. Adams
George R. Marcotte, Matthew J. Miller, Hawley E. Kunz, Zachary C. Ryan, Matthew D. Strub, Patrick M. Vanderboom, Carrie J. Heppelmann, Sarah Chau, Zachary D. Von Ruff, Sean P. Kilroe, Andrew T. McKeen, Jason M. Dierdorff, Jennifer I. Stern, Karl A. Nath, Chad E. Grueter, Vitor A. Lira, Andrew R. Judge, Blake B. Rasmussen, K. Sreekumaran Nair, Ian R. Lanza, Scott M. Ebert, Christopher M. Adams
View: Text | PDF
Research Article Metabolism Muscle biology

GADD45A is a mediator of mitochondrial loss, atrophy, and weakness in skeletal muscle

  • Text
  • PDF
Abstract

Aging and many illnesses and injuries impair skeletal muscle mass and function, but the molecular mechanisms are not well understood. To better understand the mechanisms, we generated and studied transgenic mice with skeletal muscle–specific expression of growth arrest and DNA damage inducible α (GADD45A), a signaling protein whose expression in skeletal muscle rises during aging and a wide range of illnesses and injuries. We found that GADD45A induced several cellular changes that are characteristic of skeletal muscle atrophy, including a reduction in skeletal muscle mitochondria and oxidative capacity, selective atrophy of glycolytic muscle fibers, and paradoxical expression of oxidative myosin heavy chains despite mitochondrial loss. These cellular changes were at least partly mediated by MAP kinase kinase kinase 4, a protein kinase that is directly activated by GADD45A. By inducing these changes, GADD45A decreased the mass of muscles that are enriched in glycolytic fibers, and it impaired strength, specific force, and endurance exercise capacity. Furthermore, as predicted by data from mouse models, we found that GADD45A expression in skeletal muscle was associated with muscle weakness in humans. Collectively, these findings identify GADD45A as a mediator of mitochondrial loss, atrophy, and weakness in mouse skeletal muscle and a potential target for muscle weakness in humans.

Authors

George R. Marcotte, Matthew J. Miller, Hawley E. Kunz, Zachary C. Ryan, Matthew D. Strub, Patrick M. Vanderboom, Carrie J. Heppelmann, Sarah Chau, Zachary D. Von Ruff, Sean P. Kilroe, Andrew T. McKeen, Jason M. Dierdorff, Jennifer I. Stern, Karl A. Nath, Chad E. Grueter, Vitor A. Lira, Andrew R. Judge, Blake B. Rasmussen, K. Sreekumaran Nair, Ian R. Lanza, Scott M. Ebert, Christopher M. Adams

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 1,290 332
PDF 195 55
Figure 548 3
Supplemental data 420 26
Citation downloads 102 0
Totals 2,555 416
Total Views 2,971

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts