Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Schwann cells modulate nociception in neurofibromatosis 1
Namrata G.R. Raut, Laura A. Maile, Leila M. Oswalt, Irati Mitxelena, Aaditya Adlakha, Kourtney L. Sprague, Ashley R. Rupert, Lane Bokros, Megan C. Hofmann, Jennifer Patritti-Cram, Tilat A. Rizvi, Luis F. Queme, Kwangmin Choi, Nancy Ratner, Michael P. Jankowski
Namrata G.R. Raut, Laura A. Maile, Leila M. Oswalt, Irati Mitxelena, Aaditya Adlakha, Kourtney L. Sprague, Ashley R. Rupert, Lane Bokros, Megan C. Hofmann, Jennifer Patritti-Cram, Tilat A. Rizvi, Luis F. Queme, Kwangmin Choi, Nancy Ratner, Michael P. Jankowski
View: Text | PDF
Research Article Neuroscience

Schwann cells modulate nociception in neurofibromatosis 1

  • Text
  • PDF
Abstract

Pain of unknown etiology is frequent in individuals with the tumor predisposition syndrome neurofibromatosis 1 (NF1), even when tumors are absent. Nerve Schwann cells (SCs) were recently shown to play roles in nociceptive processing, and we find that chemogenetic activation of SCs is sufficient to induce afferent and behavioral mechanical hypersensitivity in wild-type mice. In mouse models, animals showed afferent and behavioral hypersensitivity when SCs, but not neurons, lacked Nf1. Importantly, hypersensitivity corresponded with SC-specific upregulation of mRNA encoding glial cell line–derived neurotrophic factor (GDNF), independently of the presence of tumors. Neuropathic pain-like behaviors in the NF1 mice were inhibited by either chemogenetic silencing of SC calcium or by systemic delivery of GDNF-targeting antibodies. Together, these findings suggest that alterations in SCs directly modulate mechanical pain and suggest cell-specific treatment strategies to ameliorate pain in individuals with NF1.

Authors

Namrata G.R. Raut, Laura A. Maile, Leila M. Oswalt, Irati Mitxelena, Aaditya Adlakha, Kourtney L. Sprague, Ashley R. Rupert, Lane Bokros, Megan C. Hofmann, Jennifer Patritti-Cram, Tilat A. Rizvi, Luis F. Queme, Kwangmin Choi, Nancy Ratner, Michael P. Jankowski

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 1,014 220
PDF 154 62
Figure 283 4
Table 122 0
Supplemental data 72 12
Citation downloads 74 0
Totals 1,719 298
Total Views 2,017

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts