Mutation of the ATP2A2 gene encoding sarco-endoplasmic reticulum calcium ATPase 2 (SERCA2) was linked to Darier disease more than 2 decades ago; however, there remain no targeted therapies for this disorder causing recurrent skin blistering and infections. Since Atp2a2-knockout mice do not phenocopy its pathology, we established a human tissue model of Darier disease to elucidate its pathogenesis and identify potential therapies. Leveraging CRISPR/Cas9, we generated human keratinocytes lacking SERCA2, which replicated features of Darier disease, including weakened intercellular adhesion and defective differentiation in organotypic epidermis. To identify pathogenic drivers downstream of SERCA2 depletion, we performed RNA sequencing and proteomics analysis. SERCA2-deficient keratinocytes lacked desmosomal and cytoskeletal proteins required for epidermal integrity and exhibited excess MAPK signaling, which modulates keratinocyte adhesion and differentiation. Immunostaining patient biopsies substantiated these findings, with lesions showing keratin deficiency, cadherin mislocalization, and ERK hyperphosphorylation. Dampening ERK activity with MEK inhibitors rescued adhesive protein expression and restored keratinocyte sheet integrity despite SERCA2 depletion or chemical inhibition. In sum, coupling multiomic analysis with human organotypic epidermis as a preclinical model, we found that SERCA2 haploinsufficiency disrupts critical adhesive components in keratinocytes via ERK signaling and identified MEK inhibition as a treatment strategy for Darier disease.
Shivam A. Zaver, Mrinal K. Sarkar, Shaun Egolf, Jonathan Zou, Afua Tiwaa, Brian C. Capell, Johann E. Gudjonsson, Cory L. Simpson
Usage data is cumulative from December 2024 through December 2025.
| Usage | JCI | PMC |
|---|---|---|
| Text version | 1,490 | 481 |
| 257 | 145 | |
| Figure | 527 | 3 |
| Supplemental data | 127 | 8 |
| Citation downloads | 103 | 0 |
| Totals | 2,504 | 637 |
| Total Views | 3,141 | |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.