Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Perturbation of endoplasmic reticulum proteostasis triggers tissue injury in the thyroid gland
Xiaohan Zhang, Crystal Young, Xiao-Hui Liao, Samuel Refetoff, Mauricio Torres, Yaron Tomer, Mihaela Stefan-Lifshitz, Hao Zhang, Dennis Larkin, Deyu Fang, Ling Qi, Peter Arvan
Xiaohan Zhang, Crystal Young, Xiao-Hui Liao, Samuel Refetoff, Mauricio Torres, Yaron Tomer, Mihaela Stefan-Lifshitz, Hao Zhang, Dennis Larkin, Deyu Fang, Ling Qi, Peter Arvan
View: Text | PDF
Research Article Cell biology

Perturbation of endoplasmic reticulum proteostasis triggers tissue injury in the thyroid gland

  • Text
  • PDF
Abstract

Defects in endoplasmic reticulum (ER) proteostasis have been linked to diseases in multiple organ systems. Here we examined the impact of perturbation of ER proteostasis in mice bearing thyrocyte-specific knockout of either HRD1 (to disable ER-associated protein degradation [ERAD]) or ATG7 (to disable autophagy) in the absence or presence of heterozygous expression of misfolded mutant thyroglobulin (the most highly expressed thyroid gene product, synthesized in the ER). Misfolding-inducing thyroglobulin mutations are common in humans but are said to yield only autosomal-recessive disease — perhaps because misfolded thyroglobulin protein might undergo disposal by ERAD or ER macroautophagy. We find that as single defects, neither ERAD, nor autophagy, nor heterozygous thyroglobulin misfolding altered circulating thyroxine levels, and neither defective ERAD nor defective autophagy caused any gross morphological change in an otherwise WT thyroid gland. However, heterozygous expression of misfolded thyroglobulin itself triggered significant ER stress and individual thyrocyte death while maintaining integrity of the surrounding thyroid epithelium. In this context, deficiency of ERAD (but not autophagy) resulted in patchy whole-follicle death with follicular collapse and degeneration, accompanied by infiltration of bone marrow–derived macrophages. Perturbation of thyrocyte ER proteostasis is thus a risk factor for both cell death and follicular demise.

Authors

Xiaohan Zhang, Crystal Young, Xiao-Hui Liao, Samuel Refetoff, Mauricio Torres, Yaron Tomer, Mihaela Stefan-Lifshitz, Hao Zhang, Dennis Larkin, Deyu Fang, Ling Qi, Peter Arvan

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 555 148
PDF 122 35
Figure 308 3
Supplemental data 83 7
Citation downloads 82 0
Totals 1,150 193
Total Views 1,343

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts