Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
TBC1D32 variants disrupt retinal ciliogenesis and cause retinitis pigmentosa
Béatrice Bocquet, Caroline Borday, Nejla Erkilic, Daria Mamaeva, Alicia Donval, Christel Masson, Karine Parain, Karolina Kaminska, Mathieu Quinodoz, Irene Perea-Romero, Gema Garcia-Garcia, Carla Jimenez-Medina, Hassan Boukhaddaoui, Arthur Coget, Nicolas Leboucq, Giacomo Calzetti, Stefano Gandolfi, Antonio Percesepe, Valeria Barili, Vera Uliana, Marco Delsante, Francesca Bozzetti, Hendrik P.N. Scholl, Marta Corton, Carmen Ayuso, Jose M. Millan, Carlo Rivolta, Isabelle Meunier, Muriel Perron, Vasiliki Kalatzis
Béatrice Bocquet, Caroline Borday, Nejla Erkilic, Daria Mamaeva, Alicia Donval, Christel Masson, Karine Parain, Karolina Kaminska, Mathieu Quinodoz, Irene Perea-Romero, Gema Garcia-Garcia, Carla Jimenez-Medina, Hassan Boukhaddaoui, Arthur Coget, Nicolas Leboucq, Giacomo Calzetti, Stefano Gandolfi, Antonio Percesepe, Valeria Barili, Vera Uliana, Marco Delsante, Francesca Bozzetti, Hendrik P.N. Scholl, Marta Corton, Carmen Ayuso, Jose M. Millan, Carlo Rivolta, Isabelle Meunier, Muriel Perron, Vasiliki Kalatzis
View: Text | PDF
Research Article Genetics Ophthalmology

TBC1D32 variants disrupt retinal ciliogenesis and cause retinitis pigmentosa

  • Text
  • PDF
Abstract

Retinitis pigmentosa (RP) is the most common inherited retinal disease (IRD) and is characterized by photoreceptor degeneration and progressive vision loss. We report 4 patients presenting with RP from 3 unrelated families with variants in TBC1D32, which to date has never been associated with an IRD. To validate TBC1D32 as a putative RP causative gene, we combined Xenopus in vivo approaches and human induced pluripotent stem cell–derived (iPSC-derived) retinal models. Our data showed that TBC1D32 was expressed during retinal development and that it played an important role in retinal pigment epithelium (RPE) differentiation. Furthermore, we identified a role for TBC1D32 in ciliogenesis of the RPE. We demonstrated elongated ciliary defects that resulted in disrupted apical tight junctions, loss of functionality (delayed retinoid cycling and altered secretion balance), and the onset of an epithelial-mesenchymal transition–like phenotype. Last, our results suggested photoreceptor differentiation defects, including connecting cilium anomalies, that resulted in impaired trafficking to the outer segment in cones and rods in TBC1D32 iPSC-derived retinal organoids. Overall, our data highlight a critical role for TBC1D32 in the retina and demonstrate that TBC1D32 mutations lead to RP. We thus identify TBC1D32 as an IRD-causative gene.

Authors

Béatrice Bocquet, Caroline Borday, Nejla Erkilic, Daria Mamaeva, Alicia Donval, Christel Masson, Karine Parain, Karolina Kaminska, Mathieu Quinodoz, Irene Perea-Romero, Gema Garcia-Garcia, Carla Jimenez-Medina, Hassan Boukhaddaoui, Arthur Coget, Nicolas Leboucq, Giacomo Calzetti, Stefano Gandolfi, Antonio Percesepe, Valeria Barili, Vera Uliana, Marco Delsante, Francesca Bozzetti, Hendrik P.N. Scholl, Marta Corton, Carmen Ayuso, Jose M. Millan, Carlo Rivolta, Isabelle Meunier, Muriel Perron, Vasiliki Kalatzis

×

Figure 9

Retinosome accumulation and altered secretion in human TBC1D32 iPSC-derived RPE.

Options: View larger image (or click on image) Download as PowerPoint
Retinosome accumulation and altered secretion in human TBC1D32 iPSC-deri...
IF studies and MIP confocal imaging of control (A) and TBC1D32 (B) iPSC-derived RPE using antibodies directed against N-cadherin and CRALBP. Redistribution of N-cadherin and CRALBP can be seen on the orthogonal planes. Scale bars = 10 μm. (C) Representative Western blot analysis and quantification of 2 independent blots of CRALBP distribution in the cytosol versus membrane fractions of control and TBC1D32 iPSC-derived RPE relative to the β-actin loading control. Data represented as mean ± SEM. TEM of control (D) and TBC1D32 (E) iPSC-derived RPE showing apical microvilli (MV), basal nuclei (N), pigmented melanosomes, and vesicles corresponding to lipid droplets (black arrow). Scale bar = 2 μm. (F) Quantification of the number of vesicles per cell in control (n = 38 cells) and TBC1D32 (n = 39 cells) RPE. Data are represented as mean ± SEM; ****P < 0.0001; Student’s 2-tailed t test. (G) Representative Western blot analysis of perilipin expression and quantification relative to the β-actin loading control. Data represented as mean ± SEM. n = 3 blots; *P < 0.05; 2-tailed Mann-Whitney test. (H) ELISA of PEDF and VEGF secretion in apical and basal chambers of control and TBC1D32 RPE cultured on Transwell membrane inserts. Data are expressed as a percentage of control; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001; the number of samples are indicated within bars. Student’s 2-tailed t test.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts