Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Itaconate-producing neutrophils regulate local and systemic inflammation following trauma
Janna L. Crossley, Sonya Ostashevskaya-Gohstand, Stefano Comazzetto, Jessica S. Hook, Lei Guo, Neda Vishlaghi, Conan Juan, Lin Xu, Alexander R. Horswill, Gerta Hoxhaj, Jessica G. Moreland, Robert J. Tower, Benjamin Levi
Janna L. Crossley, Sonya Ostashevskaya-Gohstand, Stefano Comazzetto, Jessica S. Hook, Lei Guo, Neda Vishlaghi, Conan Juan, Lin Xu, Alexander R. Horswill, Gerta Hoxhaj, Jessica G. Moreland, Robert J. Tower, Benjamin Levi
View: Text | PDF
Research Article Immunology Inflammation

Itaconate-producing neutrophils regulate local and systemic inflammation following trauma

  • Text
  • PDF
Abstract

Modulation of the immune response to initiate and halt the inflammatory process occurs both at the site of injury as well as systemically. Due to the evolving role of cellular metabolism in regulating cell fate and function, tendon injuries that undergo normal and aberrant repair were evaluated by metabolic profiling to determine its impact on healing outcomes. Metabolomics revealed an increasing abundance of the immunomodulatory metabolite itaconate within the injury site. Subsequent single-cell RNA-Seq and molecular and metabolomic validation identified a highly mature neutrophil subtype, not macrophages, as the primary producers of itaconate following trauma. These mature itaconate-producing neutrophils were highly inflammatory, producing cytokines that promote local injury fibrosis before cycling back to the bone marrow. In the bone marrow, itaconate was shown to alter hematopoiesis, skewing progenitor cells down myeloid lineages, thereby regulating systemic inflammation. Therapeutically, exogenous itaconate was found to reduce injury-site inflammation, promoting tenogenic differentiation and impairing aberrant vascularization with disease-ameliorating effects. These results present an intriguing role for cycling neutrophils as a sensor of inflammation induced by injury — potentially regulating immune cell production in the bone marrow through delivery of endogenously produced itaconate — and demonstrate a therapeutic potential for exogenous itaconate following tendon injury

Authors

Janna L. Crossley, Sonya Ostashevskaya-Gohstand, Stefano Comazzetto, Jessica S. Hook, Lei Guo, Neda Vishlaghi, Conan Juan, Lin Xu, Alexander R. Horswill, Gerta Hoxhaj, Jessica G. Moreland, Robert J. Tower, Benjamin Levi

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 1,781 412
PDF 260 86
Figure 421 2
Supplemental data 182 21
Citation downloads 105 0
Totals 2,749 521
Total Views 3,270

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts