IL-15 is under clinical investigation toward the goal of curing HIV infection because of its abilities to reverse HIV latency and enhance immune effector function. However, increased potency through combination with other agents may be needed. 3-Hydroxy-1,2,3-benzotriazin-4(3H)-one (HODHBt) enhances IL-15–mediated latency reversal and NK cell function by increasing STAT5 activation. We hypothesized that HODHBt would also synergize with IL-15, via STAT5, to directly enhance HIV-specific cytotoxic T cell responses. We showed that ex vivo IL-15 + HODHBt treatment markedly enhanced HIV-specific granzyme B–releasing T cell responses in PBMCs from antiretroviral therapy–suppressed (ART-suppressed) donors. We also observed upregulation of antigen processing and presentation in CD4+ T cells and increased surface MHC-I. In ex vivo PBMCs, IL-15 + HODHBt was sufficient to reduce intact proviruses in 1 of 3 ART-suppressed donors. Our findings reveal the potential for second-generation IL-15 studies incorporating HODHBt-like therapeutics. Iterative studies layering on additional latency reversal or other agents are needed to achieve consistent ex vivo reservoir reductions.
Dennis C. Copertino Jr., Carissa S. Holmberg, Jared Weiler, Adam R. Ward, J. Natalie Howard, Callie Levinger, Alina P.S. Pang, Michael J. Corley, Friederike Dündar, Paul Zumbo, Doron Betel, Rajesh T. Gandhi, Deborah K. McMahon, Ronald J. Bosch, Noemi Linden, Bernard J. Macatangay, Joshua C. Cyktor, Joseph J. Eron, John W. Mellors, Colin Kovacs, Erika Benko, Alberto Bosque, R. Brad Jones, for the AIDS Clinical Trials Group (ACTG) A5321 Team