Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Glycolytic lactate in diabetic kidney disease
Manjula Darshi, Luxcia Kugathasan, Soumya Maity, Vikas S. Sridhar, Roman Fernandez, Christine P. Limonte, Brian I. Grajeda, Afaf Saliba, Guanshi Zhang, Viktor R. Drel, Jiwan J. Kim, Richard Montellano, Jana Tumova, Daniel Montemayor, Zhu Wang, Jian-Jun Liu, Jiexun Wang, Bruce A. Perkins, Yuliya Lytvyn, Loki Natarajan, Su Chi Lim, Harold Feldman, Robert Toto, John R. Sedor, Jiten Patel, Sushrut S. Waikar, Julia Brown, Yahya Osman, Jiang He, Jing Chen, W. Brian Reeves, Ian H. de Boer, Sourav Roy, Volker Vallon, Stein Hallan, Jonathan A.L. Gelfond, David Z.I. Cherney, Kumar Sharma, for the Kidney Precision Medicine Project, and the CRIC Study Investigators
Manjula Darshi, Luxcia Kugathasan, Soumya Maity, Vikas S. Sridhar, Roman Fernandez, Christine P. Limonte, Brian I. Grajeda, Afaf Saliba, Guanshi Zhang, Viktor R. Drel, Jiwan J. Kim, Richard Montellano, Jana Tumova, Daniel Montemayor, Zhu Wang, Jian-Jun Liu, Jiexun Wang, Bruce A. Perkins, Yuliya Lytvyn, Loki Natarajan, Su Chi Lim, Harold Feldman, Robert Toto, John R. Sedor, Jiten Patel, Sushrut S. Waikar, Julia Brown, Yahya Osman, Jiang He, Jing Chen, W. Brian Reeves, Ian H. de Boer, Sourav Roy, Volker Vallon, Stein Hallan, Jonathan A.L. Gelfond, David Z.I. Cherney, Kumar Sharma, for the Kidney Precision Medicine Project, and the CRIC Study Investigators
View: Text | PDF
Research Article Nephrology

Glycolytic lactate in diabetic kidney disease

  • Text
  • PDF
Abstract

Lactate elevation is a well-characterized biomarker of mitochondrial dysfunction, but its role in diabetic kidney disease (DKD) is not well defined. Urine lactate was measured in patients with type 2 diabetes (T2D) in 3 cohorts (HUNT3, SMART2D, CRIC). Urine and plasma lactate were measured during euglycemic and hyperglycemic clamps in participants with type 1 diabetes (T1D). Patients in the HUNT3 cohort with DKD had elevated urine lactate levels compared with age- and sex-matched controls. In patients in the SMART2D and CRIC cohorts, the third tertile of urine lactate/creatinine was associated with more rapid estimated glomerular filtration rate decline, relative to first tertile. Patients with T1D demonstrated a strong association between glucose and lactate in both plasma and urine. Glucose-stimulated lactate likely derives in part from proximal tubular cells, since lactate production was attenuated with sodium-glucose cotransporter-2 (SGLT2) inhibition in kidney sections and in SGLT2-deficient mice. Several glycolytic genes were elevated in human diabetic proximal tubules. Lactate levels above 2.5 mM potently inhibited mitochondrial oxidative phosphorylation in human proximal tubule (HK2) cells. We conclude that increased lactate production under diabetic conditions can contribute to mitochondrial dysfunction and become a feed-forward component to DKD pathogenesis.

Authors

Manjula Darshi, Luxcia Kugathasan, Soumya Maity, Vikas S. Sridhar, Roman Fernandez, Christine P. Limonte, Brian I. Grajeda, Afaf Saliba, Guanshi Zhang, Viktor R. Drel, Jiwan J. Kim, Richard Montellano, Jana Tumova, Daniel Montemayor, Zhu Wang, Jian-Jun Liu, Jiexun Wang, Bruce A. Perkins, Yuliya Lytvyn, Loki Natarajan, Su Chi Lim, Harold Feldman, Robert Toto, John R. Sedor, Jiten Patel, Sushrut S. Waikar, Julia Brown, Yahya Osman, Jiang He, Jing Chen, W. Brian Reeves, Ian H. de Boer, Sourav Roy, Volker Vallon, Stein Hallan, Jonathan A.L. Gelfond, David Z.I. Cherney, Kumar Sharma, for the Kidney Precision Medicine Project, and the CRIC Study Investigators

×

Full Text PDF

Download PDF (1.14 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts