Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Prebiotic proanthocyanidins inhibit bile reflux–induced esophageal adenocarcinoma through reshaping the gut microbiome and esophageal metabolome
Katherine M. Weh, Connor L. Howard, Yun Zhang, Bridget A. Tripp, Jennifer L. Clarke, Amy B. Howell, Joel H. Rubenstein, Julian A. Abrams, Maria Westerhoff, Laura A. Kresty
Katherine M. Weh, Connor L. Howard, Yun Zhang, Bridget A. Tripp, Jennifer L. Clarke, Amy B. Howell, Joel H. Rubenstein, Julian A. Abrams, Maria Westerhoff, Laura A. Kresty
View: Text | PDF
Research Article Gastroenterology Oncology

Prebiotic proanthocyanidins inhibit bile reflux–induced esophageal adenocarcinoma through reshaping the gut microbiome and esophageal metabolome

  • Text
  • PDF
Abstract

The gut and local esophageal microbiome progressively shift from healthy commensal bacteria to inflammation-linked pathogenic bacteria in patients with gastroesophageal reflux disease, Barrett’s esophagus, and esophageal adenocarcinoma (EAC). However, mechanisms by which microbial communities and metabolites contribute to reflux-driven EAC remain incompletely understood and challenging to target. Herein, we utilized a rat reflux-induced EAC model to investigate targeting the gut microbiome–esophageal metabolome axis with cranberry proanthocyanidins (C-PAC) to inhibit EAC progression. Sprague-Dawley rats, with or without reflux induction, received water or C-PAC ad libitum (700 μg/rat/day) for 25 or 40 weeks. C-PAC exerted prebiotic activity abrogating reflux-induced dysbiosis and mitigating bile acid metabolism and transport, culminating in significant inhibition of EAC through TLR/NF-κB/TP53 signaling cascades. At the species level, C-PAC mitigated reflux-induced pathogenic bacteria (Streptococcus parasanguinis, Escherichia coli, and Proteus mirabilis). C-PAC specifically reversed reflux-induced bacterial, inflammatory, and immune-implicated proteins and genes, including Ccl4, Cd14, Crp, Cxcl1, Il6, Il1b, Lbp, Lcn2, Myd88, Nfkb1, Tlr2, and Tlr4, aligning with changes in human EAC progression, as confirmed through public databases. C-PAC is a safe, promising dietary constituent that may be utilized alone or potentially as an adjuvant to current therapies to prevent EAC progression through ameliorating reflux-induced dysbiosis, inflammation, and cellular damage.

Authors

Katherine M. Weh, Connor L. Howard, Yun Zhang, Bridget A. Tripp, Jennifer L. Clarke, Amy B. Howell, Joel H. Rubenstein, Julian A. Abrams, Maria Westerhoff, Laura A. Kresty

×

Usage data is cumulative from February 2025 through February 2026.

Usage JCI PMC
Text version 1,737 302
PDF 179 81
Figure 341 12
Table 102 0
Supplemental data 254 12
Citation downloads 127 0
Totals 2,740 407
Total Views 3,147

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts