Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Innate immune activation restricts priming and protective efficacy of the radiation-attenuated PfSPZ malaria vaccine
Leetah Senkpeil, Jyoti Bhardwaj, Morgan R. Little, Prasida Holla, Aditi Upadhye, Elizabeth M. Fusco, Phillip A. Swanson II, Ryan E. Wiegand, Michael D. Macklin, Kevin Bi, Barbara J. Flynn, Ayako Yamamoto, Erik L. Gaskin, D. Noah Sather, Adrian L. Oblak, Edward Simpson, Hongyu Gao, W. Nicholas Haining, Kathleen B. Yates, Xiaowen Liu, Tooba Murshedkar, Thomas L. Richie, B. Kim Lee Sim, Kephas Otieno, Simon Kariuki, Xiaoling Xuei, Yunlong Liu, Rafael B. Polidoro, Stephen L. Hoffman, Martina Oneko, Laura C. Steinhardt, Nathan W. Schmidt, Robert A. Seder, Tuan M. Tran
Leetah Senkpeil, Jyoti Bhardwaj, Morgan R. Little, Prasida Holla, Aditi Upadhye, Elizabeth M. Fusco, Phillip A. Swanson II, Ryan E. Wiegand, Michael D. Macklin, Kevin Bi, Barbara J. Flynn, Ayako Yamamoto, Erik L. Gaskin, D. Noah Sather, Adrian L. Oblak, Edward Simpson, Hongyu Gao, W. Nicholas Haining, Kathleen B. Yates, Xiaowen Liu, Tooba Murshedkar, Thomas L. Richie, B. Kim Lee Sim, Kephas Otieno, Simon Kariuki, Xiaoling Xuei, Yunlong Liu, Rafael B. Polidoro, Stephen L. Hoffman, Martina Oneko, Laura C. Steinhardt, Nathan W. Schmidt, Robert A. Seder, Tuan M. Tran
View: Text | PDF
Research Article Infectious disease Vaccines

Innate immune activation restricts priming and protective efficacy of the radiation-attenuated PfSPZ malaria vaccine

  • Text
  • PDF
Abstract

A systems analysis was conducted to determine the potential molecular mechanisms underlying differential immunogenicity and protective efficacy results of a clinical trial of the radiation-attenuated whole-sporozoite PfSPZ vaccine in African infants. Innate immune activation and myeloid signatures at prevaccination baseline correlated with protection from P. falciparum parasitemia in placebo controls. These same signatures were associated with susceptibility to parasitemia among infants who received the highest and most protective PfSPZ vaccine dose. Machine learning identified spliceosome, proteosome, and resting DC signatures as prevaccination features predictive of protection after highest-dose PfSPZ vaccination, whereas baseline circumsporozoite protein–specific (CSP-specific) IgG predicted nonprotection. Prevaccination innate inflammatory and myeloid signatures were associated with higher sporozoite-specific IgG Ab response but undetectable PfSPZ-specific CD8+ T cell responses after vaccination. Consistent with these human data, innate stimulation in vivo conferred protection against infection by sporozoite injection in malaria-naive mice while diminishing the CD8+ T cell response to radiation-attenuated sporozoites. These data suggest a dichotomous role of innate stimulation for malaria protection and induction of protective immunity by whole-sporozoite malaria vaccines. The uncoupling of vaccine-induced protective immunity achieved by Abs from more protective CD8+ T cell responses suggests that PfSPZ vaccine efficacy in malaria-endemic settings may be constrained by opposing antigen presentation pathways.

Authors

Leetah Senkpeil, Jyoti Bhardwaj, Morgan R. Little, Prasida Holla, Aditi Upadhye, Elizabeth M. Fusco, Phillip A. Swanson II, Ryan E. Wiegand, Michael D. Macklin, Kevin Bi, Barbara J. Flynn, Ayako Yamamoto, Erik L. Gaskin, D. Noah Sather, Adrian L. Oblak, Edward Simpson, Hongyu Gao, W. Nicholas Haining, Kathleen B. Yates, Xiaowen Liu, Tooba Murshedkar, Thomas L. Richie, B. Kim Lee Sim, Kephas Otieno, Simon Kariuki, Xiaoling Xuei, Yunlong Liu, Rafael B. Polidoro, Stephen L. Hoffman, Martina Oneko, Laura C. Steinhardt, Nathan W. Schmidt, Robert A. Seder, Tuan M. Tran

×

Usage data is cumulative from January 2025 through January 2026.

Usage JCI PMC
Text version 1,299 195
PDF 177 49
Figure 404 16
Supplemental data 447 11
Citation downloads 77 0
Totals 2,404 271
Total Views 2,675

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts