Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Factor-inhibiting HIF (FIH) promotes lung cancer progression
Ana García-del Río, Endika Prieto-Fernández, Leire Egia-Mendikute, Asier Antoñana-Vildosola, Borja Jimenez-Lasheras, So Young Lee, Adrián Barreira-Manrique, Samanta Romina Zanetti, Ander de Blas, Paloma Velasco-Beltrán, Alexandre Bosch, Ana M. Aransay, Asis Palazon
Ana García-del Río, Endika Prieto-Fernández, Leire Egia-Mendikute, Asier Antoñana-Vildosola, Borja Jimenez-Lasheras, So Young Lee, Adrián Barreira-Manrique, Samanta Romina Zanetti, Ander de Blas, Paloma Velasco-Beltrán, Alexandre Bosch, Ana M. Aransay, Asis Palazon
View: Text | PDF
Research Article Cell biology

Factor-inhibiting HIF (FIH) promotes lung cancer progression

  • Text
  • PDF
Abstract

Factor-inhibiting HIF (FIH) is an asparagine hydroxylase that acts on hypoxia-inducible factors (HIFs) to control cellular adaptation to hypoxia. FIH is expressed in several tumor types, but its impact in tumor progression remains largely unexplored. We observed that FIH was expressed on human lung cancer tissue. Deletion of FIH in mouse and human lung cancer cells resulted in an increased glycolytic metabolism, consistent with increased HIF activity. FIH-deficient lung cancer cells exhibited decreased proliferation. Analysis of RNA-Seq data confirmed changes in the cell cycle and survival and revealed molecular pathways that were dysregulated in the absence of FIH, including the upregulation of angiomotin (Amot), a key component of the Hippo tumor suppressor pathway. We show that FIH-deficient tumors were characterized by higher immune infiltration of NK and T cells compared with FIH competent tumor cells. In vivo studies demonstrate that FIH deletion resulted in reduced tumor growth and metastatic capacity. Moreover, high FIH expression correlated with poor overall survival in non–small cell lung cancer (NSCLC). Our data unravel FIH as a therapeutic target for the treatment of lung cancer.

Authors

Ana García-del Río, Endika Prieto-Fernández, Leire Egia-Mendikute, Asier Antoñana-Vildosola, Borja Jimenez-Lasheras, So Young Lee, Adrián Barreira-Manrique, Samanta Romina Zanetti, Ander de Blas, Paloma Velasco-Beltrán, Alexandre Bosch, Ana M. Aransay, Asis Palazon

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 1,098 199
PDF 158 40
Figure 397 2
Supplemental data 154 6
Citation downloads 92 0
Totals 1,899 247
Total Views 2,146

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts