Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Maternal acellular pertussis vaccination in mice impairs cellular immunity to Bordetella pertussis infection in offspring
Violaine Dubois, Jonathan Chatagnon, Manon Depessemier, Camille Locht
Violaine Dubois, Jonathan Chatagnon, Manon Depessemier, Camille Locht
View: Text | PDF
Research Article Infectious disease Vaccines

Maternal acellular pertussis vaccination in mice impairs cellular immunity to Bordetella pertussis infection in offspring

  • Text
  • PDF
Abstract

Given the resurgence of pertussis, several countries have introduced maternal tetanus, diphtheria, and acellular pertussis (aP) vaccination during pregnancy to protect young infants against severe pertussis. Although protective against the disease, the effect of maternal aP vaccination on bacterial colonization of the offspring is unknown. Here, we used a mouse model to demonstrate that maternal aP immunization, either before or during pregnancy, protects pups from lung colonization by Bordetella pertussis. However, maternal aP vaccination resulted in significantly prolonged nasal carriage of B. pertussis by inhibiting the natural recruitment of IL-17–producing resident memory T cells and ensuing neutrophil influx in the nasal tissue, especially of those with proinflammatory and cytotoxic properties. Prolonged nasal carriage after aP vaccination is due to IL-4 signaling, as prolonged nasal carriage is abolished in IL-4Rα–/– mice. The effect of maternal aP vaccination can be transferred transplacentally to the offspring or via breastfeeding and is long-lasting, as it persists into adulthood. Maternal aP vaccination may, thus, augment the B. pertussis reservoir.

Authors

Violaine Dubois, Jonathan Chatagnon, Manon Depessemier, Camille Locht

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 677 151
PDF 146 36
Figure 308 0
Supplemental data 97 7
Citation downloads 114 0
Totals 1,342 194
Total Views 1,536

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts