Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

PRDM16 deficiency in vascular smooth muscle cells aggravates abdominal aortic aneurysm
Zhenguo Wang, Xiangjie Zhao, Guizhen Zhao, Yanhong Guo, Haocheng Lu, Wenjuan Mu, Juan Zhong, Minerva Garcia-Barrio, Jifeng Zhang, Y. Eugene Chen, Lin Chang
Zhenguo Wang, Xiangjie Zhao, Guizhen Zhao, Yanhong Guo, Haocheng Lu, Wenjuan Mu, Juan Zhong, Minerva Garcia-Barrio, Jifeng Zhang, Y. Eugene Chen, Lin Chang
View: Text | PDF
Research Article Vascular biology

PRDM16 deficiency in vascular smooth muscle cells aggravates abdominal aortic aneurysm

  • Text
  • PDF
Abstract

Abdominal aortic aneurysm (AAA) is usually asymptomatic until life-threatening complications occur, predominantly involving aortic rupture. Currently, no drug-based treatments are available, primarily due to limited understanding of AAA pathogenesis. The transcriptional regulator PR domain–containing protein 16 (PRDM16) is highly expressed in the aorta, but its functions in the aorta are largely unknown. By RNA-seq analysis, we found that vascular smooth muscle cell–specific (VSMC-specific) Prdm16-knockout (Prdm16SMKO) mice already showed extensive changes in the expression of genes associated with extracellular matrix (ECM) remodeling and inflammation in the abdominal aorta under normal housing conditions without any pathological stimuli. Human AAA lesions displayed lower PRDM16 expression. Periadventitial elastase application to the suprarenal region of the abdominal aorta aggravated AAA formation in Prdm16SMKO mice. During AAA development, VSMCs undergo apoptosis because of both intrinsic and environmental changes, including inflammation and ECM remodeling. Prdm16 deficiency promoted inflammation and apoptosis in VSMCs. A disintegrin and metalloproteinase 12 (ADAM12) is a gelatinase that can degrade various ECMs. We found that ADAM12 is a target of transcriptional repression by PRDM16. Adam12 knockdown reversed VSMC apoptosis induced by Prdm16 deficiency. Our study demonstrated that PRDM16 deficiency in VSMCs promoted ADAM12 expression and aggravates AAA formation, which may provide potential targets for AAA treatment.

Authors

Zhenguo Wang, Xiangjie Zhao, Guizhen Zhao, Yanhong Guo, Haocheng Lu, Wenjuan Mu, Juan Zhong, Minerva Garcia-Barrio, Jifeng Zhang, Y. Eugene Chen, Lin Chang

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 842 330
PDF 166 55
Figure 337 14
Supplemental data 122 21
Citation downloads 99 0
Totals 1,566 420
Total Views 1,986

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts