Reactive oxygen species (ROS) are natural products of mitochondrial oxidative metabolism and oxidative protein folding. ROS levels must be well controlled, since elevated ROS has been shown to have deleterious effects on osteoblasts. Moreover, excessive ROS is thought to underlie many of the skeletal phenotypes associated with aging and sex steroid deficiency in mice and humans. The mechanisms by which osteoblasts regulate ROS and how ROS inhibits osteoblasts are not well understood. Here, we demonstrate that de novo glutathione (GSH) biosynthesis is essential in neutralizing ROS and establish a proosteogenic reduction and oxidation reaction (REDOX) environment. Using a multifaceted approach, we demonstrate that reducing GSH biosynthesis led to acute degradation of RUNX2, impaired osteoblast differentiation, and reduced bone formation. Conversely, reducing ROS using catalase enhanced RUNX2 stability and promoted osteoblast differentiation and bone formation when GSH biosynthesis was limited. Highlighting the therapeutic implications of these findings, in utero antioxidant therapy stabilized RUNX2 and improved bone development in the Runx2+/– haplo-insufficient mouse model of human cleidocranial dysplasia. Thus, our data establish RUNX2 as a molecular sensor of the osteoblast REDOX environment and mechanistically clarify how ROS negatively impacts osteoblast differentiation and bone formation.
Guoli Hu, Yilin Yu, Deepika Sharma, Shondra M. Pruett-Miller, Yinshi Ren, Guo-Fang Zhang, Courtney M. Karner
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 1,197 | 414 |
123 | 120 | |
Figure | 380 | 17 |
Supplemental data | 80 | 8 |
Citation downloads | 62 | 0 |
Totals | 1,842 | 559 |
Total Views | 2,401 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.