Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
HIF-1 regulates pathogenic cytotoxic T cells in lupus skin disease
Alicia J. Little, … , Jennifer M. McNiff, Joe Craft
Alicia J. Little, … , Jennifer M. McNiff, Joe Craft
Published August 1, 2023
Citation Information: JCI Insight. 2023;8(16):e166076. https://doi.org/10.1172/jci.insight.166076.
View: Text | PDF
Research Article Dermatology

HIF-1 regulates pathogenic cytotoxic T cells in lupus skin disease

  • Text
  • PDF
Abstract

Cutaneous lupus erythematosus (CLE) is a disfiguring autoimmune skin disease characterized by an inflammatory infiltrate rich in T cells, which are strongly implicated in tissue damage. How these cells adapt to the skin environment and promote tissue inflammation and damage is not known. In lupus nephritis, we previously identified an inflammatory gene program in kidney-infiltrating T cells that is dependent on HIF-1, a transcription factor critical for the cellular and developmental response to hypoxia as well as inflammation-associated signals. In our present studies using a mouse model of lupus skin disease, we find that skin-infiltrating CD4+ and CD8+ T cells also express high levels of HIF-1. Skin-infiltrating T cells demonstrated a strong cytotoxic signature at the transcript and protein levels, and HIF-1 inhibition abrogated skin and systemic diseases in association with decreased T cell cytotoxic activity. We also demonstrate in human CLE tissue that the T cell–rich inflammatory infiltrate exhibited increased amounts of HIF-1 and a cytotoxic signature. Granzyme B–expressing T cells were concentrated at sites of skin tissue damage in CLE, suggesting relevance of this pathway to human disease.

Authors

Alicia J. Little, Ping-Min Chen, Matthew D. Vesely, Rahanna N. Khan, Jacob Fiedler, James Garritano, Fahrisa I. Maisha, Jennifer M. McNiff, Joe Craft

×

Graphical abstract

Options: View larger image (or click on image)

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts