Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Cytokine storm–based mechanisms for extrapulmonary manifestations of SARS-CoV-2 infection
Maria Del Nogal Avila, … , Lionel C. Clement, Sumant S. Chugh
Maria Del Nogal Avila, … , Lionel C. Clement, Sumant S. Chugh
Published April 11, 2023
Citation Information: JCI Insight. 2023;8(10):e166012. https://doi.org/10.1172/jci.insight.166012.
View: Text | PDF
Research Article Nephrology

Cytokine storm–based mechanisms for extrapulmonary manifestations of SARS-CoV-2 infection

  • Text
  • PDF
Abstract

Viral illnesses like SARS-CoV-2 have pathologic effects on nonrespiratory organs in the absence of direct viral infection. We injected mice with cocktails of rodent equivalents of human cytokine storms resulting from SARS-CoV-2/COVID-19 or rhinovirus common cold infection. At low doses, COVID-19 cocktails induced glomerular injury and albuminuria in zinc fingers and homeoboxes 2 (Zhx2) hypomorph and Zhx2+/+ mice to mimic COVID-19–related proteinuria. Common Cold cocktail induced albuminuria selectively in Zhx2 hypomorph mice to model relapse of minimal change disease, which improved after depletion of TNF-α, soluble IL-4Rα, or IL-6. The Zhx2 hypomorph state increased cell membrane to nuclear migration of podocyte ZHX proteins in vivo (both cocktails) and lowered phosphorylated STAT6 activation (COVID-19 cocktail) in vitro. At higher doses, COVID-19 cocktails induced acute heart injury, myocarditis, pericarditis, acute liver injury, acute kidney injury, and high mortality in Zhx2+/+ mice, whereas Zhx2 hypomorph mice were relatively protected, due in part to early, asynchronous activation of STAT5 and STAT6 pathways in these organs. Dual depletion of cytokine combinations of TNF-α with IL-2, IL-13, or IL-4 in Zhx2+/+ mice reduced multiorgan injury and eliminated mortality. Using genome sequencing and CRISPR/Cas9, an insertion upstream of ZHX2 was identified as a cause of the human ZHX2 hypomorph state.

Authors

Maria Del Nogal Avila, Ranjan Das, Joubert Kharlyngdoh, Eduardo Molina-Jijon, Hector Donoro Blazquez, Stéphanie Gambut, Michael Crowley, David K. Crossman, Rasheed A. Gbadegesin, Sunveer S. Chugh, Sunjeet S. Chugh, Carmen Avila-Casado, Camille Macé, Lionel C. Clement, Sumant S. Chugh

×

Full Text PDF | Download (13.62 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts