Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Calcineurin inhibitors stimulate Kir4.1/Kir5.1 of the distal convoluted tubule to increase NaCl cotransporter
Dan-Dan Zhang, … , Dao-Hong Lin, Wen-Hui Wang
Dan-Dan Zhang, … , Dao-Hong Lin, Wen-Hui Wang
Published February 23, 2023
Citation Information: JCI Insight. 2023;8(7):e165987. https://doi.org/10.1172/jci.insight.165987.
View: Text | PDF
Research Article Cell biology Nephrology

Calcineurin inhibitors stimulate Kir4.1/Kir5.1 of the distal convoluted tubule to increase NaCl cotransporter

  • Text
  • PDF
Abstract

We examine whether calcineurin or protein phosphatase 2B (PP2B) regulates the basolateral inwardly rectifying potassium channel Kir4.1/Kir5.1 in the distal convoluted tubule (DCT). Application of tacrolimus (FK506) or cyclosporine A (CsA) increased whole-cell Kir4.1/Kir5.1-mediated K+ currents and hyperpolarized the DCT membrane. Moreover, FK506-induced stimulation of Kir4.1/Kir5.1 was absent in kidney tubule–specific 12 kDa FK506-binding protein–knockout mice (Ks-FKBP-12–KO). In contrast, CsA stimulated Kir4.1/Kir5.1 of the DCT in Ks-FKBP-12–KO mice, suggesting that FK506-induced stimulation of Kir4.1/Kir5.1 was due to inhibiting PP2B. Single-channel patch-clamp experiments demonstrated that FK506 or CsA stimulated the basolateral Kir4.1/Kir5.1 activity of the DCT, defined by NPo (a product of channel number and open probability). However, this effect was absent in the DCT treated with Src family protein tyrosine kinase (SFK) inhibitor or hydroxyl peroxide. Fluorescence imaging demonstrated that CsA treatment increased membrane staining intensity of Kir4.1 in the DCT of Kcnj10fl/fl mice. Moreover, CsA treatment had no obvious effect on phosphorylated NaCl cotransporter (pNCC) expression in Ks-Kir4.1–KO mice. Immunoblotting showed acute FK506 treatment increased pNCC expression in Kcnj10fl/fl mice, but this effect was attenuated in Ks-Kir4.1–KO mice. In vivo measurement of thiazide-induced renal Na+ excretion demonstrated that FK506 enhanced thiazide-induced natriuresis. This effect was absent in Ks-FKBP-12–KO mice and blunted in Ks-Kir4.1–KO mice. We conclude that inhibition of PP2B stimulates Kir4.1/Kir5.1 of the DCT and NCC and that PP2B inhibition–induced stimulation of NCC is partially achieved by stimulation of the basolateral Kir4.1/Kir5.1.

Authors

Dan-Dan Zhang, Xin-Peng Duan, Kerim Mutig, Franziska Rausch, Yu Xiao, Jun-Ya Zheng, Dao-Hong Lin, Wen-Hui Wang

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 468 167
PDF 84 27
Figure 250 7
Supplemental data 35 3
Citation downloads 52 0
Totals 889 204
Total Views 1,093

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts