Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Redistribution of the chromatin remodeler Brg1 directs smooth muscle–derived adventitial progenitor–to–myofibroblast differentiation and vascular fibrosis
Austin J. Jolly, Sizhao Lu, Allison M. Dubner, Keith A. Strand, Marie F. Mutryn, Aaron Pilotti-Riley, Etienne P. Danis, Raphael A. Nemenoff, Karen S. Moulton, Mark W. Majesky, Mary C.M. Weiser-Evans
Austin J. Jolly, Sizhao Lu, Allison M. Dubner, Keith A. Strand, Marie F. Mutryn, Aaron Pilotti-Riley, Etienne P. Danis, Raphael A. Nemenoff, Karen S. Moulton, Mark W. Majesky, Mary C.M. Weiser-Evans
View: Text | PDF
Research Article Vascular biology

Redistribution of the chromatin remodeler Brg1 directs smooth muscle–derived adventitial progenitor–to–myofibroblast differentiation and vascular fibrosis

  • Text
  • PDF
Abstract

Vascular smooth muscle–derived Sca1+ adventitial progenitor (AdvSca1-SM) cells are tissue-resident, multipotent stem cells that contribute to progression of vascular remodeling and fibrosis. Upon acute vascular injury, AdvSca1-SM cells differentiate into myofibroblasts and are embedded in perivascular collagen and the extracellular matrix. While the phenotypic properties of AdvSca1-SM–derived myofibroblasts have been defined, the underlying epigenetic regulators driving the AdvSca1-SM–to–myofibroblast transition are unclear. We show that the chromatin remodeler Smarca4/Brg1 facilitates AdvSca1-SM myofibroblast differentiation. Brg1 mRNA and protein were upregulated in AdvSca1-SM cells after acute vascular injury, and pharmacological inhibition of Brg1 by the small molecule PFI-3 attenuated perivascular fibrosis and adventitial expansion. TGF-β1 stimulation of AdvSca1-SM cells in vitro reduced expression of stemness genes while inducing expression of myofibroblast genes that was associated with enhanced contractility; PFI blocked TGF-β1–induced phenotypic transition. Similarly, genetic knockdown of Brg1 in vivo reduced adventitial remodeling and fibrosis and reversed AdvSca1-SM–to–myofibroblast transition in vitro. Mechanistically, TGF-β1 promoted redistribution of Brg1 from distal intergenic sites of stemness genes and recruitment to promoter regions of myofibroblast-related genes, which was blocked by PFI-3. These data provide insight into epigenetic regulation of resident vascular progenitor cell differentiation and support that manipulating the AdvSca1-SM phenotype will provide antifibrotic clinical benefits.

Authors

Austin J. Jolly, Sizhao Lu, Allison M. Dubner, Keith A. Strand, Marie F. Mutryn, Aaron Pilotti-Riley, Etienne P. Danis, Raphael A. Nemenoff, Karen S. Moulton, Mark W. Majesky, Mary C.M. Weiser-Evans

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 794 190
PDF 112 37
Figure 377 0
Supplemental data 50 3
Citation downloads 84 0
Totals 1,417 230
Total Views 1,647

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts