Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Origin, prospective identification, and function of circulating endothelial colony forming cells in mouse and man
Yang Lin, … , Kyoji Horie, Mervin C. Yoder
Yang Lin, … , Kyoji Horie, Mervin C. Yoder
Published January 24, 2023
Citation Information: JCI Insight. 2023. https://doi.org/10.1172/jci.insight.164781.
View: Text | PDF
Research In-Press Preview Vascular biology

Origin, prospective identification, and function of circulating endothelial colony forming cells in mouse and man

  • Text
  • PDF
Abstract

Most circulating endothelial cells are apoptotic, but rare circulating endothelial colony forming cells (C-ECFCs, also known as blood outgrowth endothelial cells (BOECs)) with proliferative and vasculogenic activity can be cultured; the origin and naïve function of these C-ECFCs remains obscure. Herein, detailed lineage tracing reveals murine C-ECFCs emerge in the early postnatal period, display high vasculogenic potential, with enriched frequency of clonal proliferative cells compared to tissue-resident ECFCs, and are not committed to or derived from the bone marrow hematopoietic system but from tissue-resident ECFCs. In human subjects, C-ECFCs are present in the CD34bright cord blood mononuclear subset, possess proliferative potential and in vivo vasculogenic function in a naïve or cultured state, and display a single cell transcriptome sharing some umbilical venous endothelial cell features like, higher Protein C Receptor and extracellular matrix gene expression. This study provides an advance for the field by identifying the origin, naïve function, and antigens to prospectively isolate C-ECFCs for translational studies.

Authors

Yang Lin, Kimihiko Banno, Chang-Hyun Gil, Jered Myslinski, Takashi Hato, W. Christopher Shelley, Hongyu Gao, Xiaoling Xuei, Yunlong Liu, David Basile, Momoko Yoshimoto, Nutan Prasain, Stefan P Tarnawsky, Ralf H. Adams, Katsuhiko Naruse, Junko Yoshida, Michael P. Murphy, Kyoji Horie, Mervin C. Yoder

×

Graphical abstract

Options: View larger image (or click on image)

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts